001     902579
005     20220131120355.0
024 7 _ |a 10.1103/PhysRevResearch.2.043150
|2 doi
024 7 _ |a 2128/29070
|2 Handle
024 7 _ |a altmetric:93322448
|2 altmetric
024 7 _ |a WOS:000605400600007
|2 WOS
037 _ _ |a FZJ-2021-04378
082 _ _ |a 530
100 1 _ |a Grassberger, Peter
|0 P:(DE-Juel1)136887
|b 0
|e Corresponding author
245 _ _ |a Morphological transitions in supercritical generalized percolation and moving interfaces in media with frozen randomness
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637567245_703
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We consider the growth of clusters in disordered media at zero temperature, as exemplified by supercritical generalized percolation and by the T=0 random field Ising model. We show that the morphology of such clusters and of their surfaces can be of different types: They can be standard compact clusters with rough or smooth surfaces, but there exists also a completely different “spongy” phase. Clusters in the spongy phase are compact as far as the size-mass relation M∼RD is concerned (with D being the space dimension) but have an outer surface (or “hull”) whose fractal dimension is also D and which is indeed dense in the interior of the entire cluster. This behavior is found in all dimensions D≥3. Slightly supercritical clusters can be of either type in D=3, while they are always spongy in D≥4. Possible consequences for the applicability of Kardar-Parisi-Zhang (KPZ) scaling to interfaces in media with frozen pinning centers are studied in detail. In particular, we find—in contrast to KPZ—a weak-coupling phase in 2+1 dimensions.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
773 _ _ |a 10.1103/PhysRevResearch.2.043150
|g Vol. 2, no. 4, p. 043150
|0 PERI:(DE-600)3004165-X
|n 4
|p 043150
|t Physical review research
|v 2
|y 2020
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/902579/files/PhysRevResearch.2.043150.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902579
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136887
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21