001     902680
005     20240313103128.0
024 7 _ |a 10.7554/eLife.68422
|2 doi
024 7 _ |a 2128/30547
|2 Handle
024 7 _ |a WOS:000794921600001
|2 WOS
037 _ _ |a FZJ-2021-04467
082 _ _ |a 600
100 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 0
|e Corresponding author
245 _ _ |a Global organization of neuronal activity only requires unstructured local connectivity
260 _ _ |a Cambridge
|c 2022
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643115151_8120
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|x 0
|f POF IV
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|x 1
|f POF IV
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|x 2
|f MSNN
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 3
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 4
|f H2020-SGA-FETFLAG-HBP-2019
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 5
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Layer, Moritz
|0 P:(DE-Juel1)174497
|b 1
|u fzj
700 1 _ |a Deutz, Lukas
|0 P:(DE-Juel1)168574
|b 2
700 1 _ |a Dabrowska, Paulina
|0 P:(DE-Juel1)171408
|b 3
700 1 _ |a Voges, Nicole
|0 P:(DE-Juel1)168479
|b 4
700 1 _ |a von Papen, Michael
|0 P:(DE-Juel1)171972
|b 5
700 1 _ |a Brochier, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 7
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 8
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 9
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 10
|u fzj
773 _ _ |a 10.7554/eLife.68422
|0 PERI:(DE-600)2687154-3
|p e68422
|t eLife
|v 11
|y 2022
|x 2050-084X
856 4 _ |u https://juser.fz-juelich.de/record/902680/files/Invoice_P007896.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902680/files/elife-68422-v1.pdf
909 C O |o oai:juser.fz-juelich.de:902680
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174497
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21