000902906 001__ 902906
000902906 005__ 20220103172026.0
000902906 0247_ $$2doi$$a10.1021/acssuschemeng.1c02045
000902906 0247_ $$2Handle$$a2128/29222
000902906 0247_ $$2WOS$$aWOS:000674165800002
000902906 037__ $$aFZJ-2021-04661
000902906 082__ $$a540
000902906 1001_ $$0P:(DE-Juel1)176852$$aÖlçücü, Gizem$$b0$$ufzj
000902906 245__ $$aEmerging Solutions for in Vivo Biocatalyst Immobilization: Tailor-Made Catalysts for Industrial Biocatalysis
000902906 260__ $$aWashington, DC$$bACS Publ.$$c2021
000902906 3367_ $$2DRIVER$$aarticle
000902906 3367_ $$2DataCite$$aOutput Types/Journal article
000902906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638365729_8351
000902906 3367_ $$2BibTeX$$aARTICLE
000902906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902906 3367_ $$00$$2EndNote$$aJournal Article
000902906 520__ $$aIn industry, enzymes are often immobilized to generate more stable enzyme preparations that are easier to store, handle, and recycle for repetitive use. Traditionally, enzymes are bound to inorganic carrier materials, which requires case-to-case optimization and incurs additional labor and costs. Therefore, with the advent of rational protein design strategies as part of bottom-up synthetic biology approaches, numerous immobilization methods have been developed that enable the one-step production and immobilization of enzymes onto biogenic carrier materials often directly within the production host, which we here refer to as in vivo immobilization. As a result, nano- to micro-meter-sized functionalized biomaterials, or biologically produced enzyme immobilizates, are obtained that can directly be used for synthetic purposes. In this Perspective, we provide an overview over established and recently emerging in vivo enzyme immobilization methods, with special emphasis on their applicability for (industrial) biocatalysis. For each approach, we present fundamental working principles as well as advantages and limitations guiding future research avenues toward sustainable applications in the bioindustry.
000902906 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902906 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902906 7001_ $$0P:(DE-Juel1)171426$$aKlaus, Oliver$$b1$$ufzj
000902906 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b2$$ufzj
000902906 7001_ $$0P:(DE-Juel1)131426$$aDrepper, Thomas$$b3$$ufzj
000902906 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b4$$eCorresponding author
000902906 773__ $$0PERI:(DE-600)2695697-4$$a10.1021/acssuschemeng.1c02045$$gVol. 9, no. 27, p. 8919 - 8945$$n27$$p8919 - 8945$$tACS sustainable chemistry & engineering$$v9$$x2168-0485$$y2021
000902906 8564_ $$uhttps://juser.fz-juelich.de/record/902906/files/%C3%96lc%C3%BCc%C3%BC_Klaus_et_al_2021_MANUSCRIPT_R2_unmarked.pdf$$yPublished on 2021-06-28. Available in OpenAccess from 2022-06-28.
000902906 8564_ $$uhttps://juser.fz-juelich.de/record/902906/files/acssuschemeng.1c02045.pdf$$yRestricted
000902906 909CO $$ooai:juser.fz-juelich.de:902906$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176852$$aForschungszentrum Jülich$$b0$$kFZJ
000902906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171426$$aForschungszentrum Jülich$$b1$$kFZJ
000902906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b2$$kFZJ
000902906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131426$$aForschungszentrum Jülich$$b3$$kFZJ
000902906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b4$$kFZJ
000902906 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902906 9141_ $$y2021
000902906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SUSTAIN CHEM ENG : 2019$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SUSTAIN CHEM ENG : 2019$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000902906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000902906 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000902906 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000902906 980__ $$ajournal
000902906 980__ $$aVDB
000902906 980__ $$aI:(DE-Juel1)IMET-20090612
000902906 980__ $$aI:(DE-Juel1)IBG-1-20101118
000902906 980__ $$aUNRESTRICTED
000902906 9801_ $$aFullTexts