001     902906
005     20220103172026.0
024 7 _ |a 10.1021/acssuschemeng.1c02045
|2 doi
024 7 _ |a 2128/29222
|2 Handle
024 7 _ |a WOS:000674165800002
|2 WOS
037 _ _ |a FZJ-2021-04661
082 _ _ |a 540
100 1 _ |a Ölçücü, Gizem
|0 P:(DE-Juel1)176852
|b 0
|u fzj
245 _ _ |a Emerging Solutions for in Vivo Biocatalyst Immobilization: Tailor-Made Catalysts for Industrial Biocatalysis
260 _ _ |a Washington, DC
|c 2021
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638365729_8351
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In industry, enzymes are often immobilized to generate more stable enzyme preparations that are easier to store, handle, and recycle for repetitive use. Traditionally, enzymes are bound to inorganic carrier materials, which requires case-to-case optimization and incurs additional labor and costs. Therefore, with the advent of rational protein design strategies as part of bottom-up synthetic biology approaches, numerous immobilization methods have been developed that enable the one-step production and immobilization of enzymes onto biogenic carrier materials often directly within the production host, which we here refer to as in vivo immobilization. As a result, nano- to micro-meter-sized functionalized biomaterials, or biologically produced enzyme immobilizates, are obtained that can directly be used for synthetic purposes. In this Perspective, we provide an overview over established and recently emerging in vivo enzyme immobilization methods, with special emphasis on their applicability for (industrial) biocatalysis. For each approach, we present fundamental working principles as well as advantages and limitations guiding future research avenues toward sustainable applications in the bioindustry.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Klaus, Oliver
|0 P:(DE-Juel1)171426
|b 1
|u fzj
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 2
|u fzj
700 1 _ |a Drepper, Thomas
|0 P:(DE-Juel1)131426
|b 3
|u fzj
700 1 _ |a Krauss, Ulrich
|0 P:(DE-Juel1)131482
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acssuschemeng.1c02045
|g Vol. 9, no. 27, p. 8919 - 8945
|0 PERI:(DE-600)2695697-4
|n 27
|p 8919 - 8945
|t ACS sustainable chemistry & engineering
|v 9
|y 2021
|x 2168-0485
856 4 _ |u https://juser.fz-juelich.de/record/902906/files/%C3%96lc%C3%BCc%C3%BC_Klaus_et_al_2021_MANUSCRIPT_R2_unmarked.pdf
|y Published on 2021-06-28. Available in OpenAccess from 2022-06-28.
856 4 _ |u https://juser.fz-juelich.de/record/902906/files/acssuschemeng.1c02045.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:902906
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131482
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-04
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2019
|d 2021-02-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2019
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21