001     902964
005     20240712084510.0
024 7 _ |2 doi
|a 10.1002/solr.202100077
024 7 _ |2 Handle
|a 2128/29867
024 7 _ |2 WOS
|a WOS:000670791900001
037 _ _ |a FZJ-2021-04710
082 _ _ |a 600
100 1 _ |0 P:(DE-Juel1)180881
|a Kulkarni, Ashish
|b 0
|e Corresponding author
245 _ _ |a Concerted Ion Migration and Diffusion‐Induced Degradation in Lead‐Free Ag 3 BiI 6 Rudorffite Solar Cells under Ambient Conditions
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2021
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1655188355_27082
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Silver bismuth iodide (SBI) materials have recently gained attention as nontoxic alternatives to lead perovskites. Although most of the studies have been focusing on photovoltaic performance, the inherent ionic nature of SBI materials, their diffusive behavior, and influence on material/device stability is underexplored. Herein, AgBi2I7, Ag2BiI5, and Ag3BiI6 thin films are developed in controlled ambient humidity conditions with a decent efficiency up to 2.32%. While exploring the device stability, it is found that Ag3BiI6 exhibits a unique ion-migration behavior where Ag+, Bi3+, and I− ions migrate and diffuse through the dopant-free hole transport layer (HTL) leading to degradation. Interestingly, this ion-migration behavior is relatively fast for the case of antisolvent-processed Ag3BiI6 thin-film-based devices contrasting the case of without antisolvent and is not observed for other SBI material-based devices. Theoretical calculations suggest that low decomposition enthalpy favors the decomposition of Ag3BiI6 to AgI and BiI3 causing migration of ions to the electrode which is protected by using a thick HTL . The new mechanism reported herein underlines the importance of SBI material composition and fundamental mechanism understanding on the stability of Ag3BiI6 material for better solar cell design and also in extending the applications of unique ion-migration behavior in various optoelectronics.
536 _ _ |0 G:(DE-HGF)POF4-1212
|a 1212 - Materials and Interfaces (POF4-121)
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Ünlü, Feray
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Pant, Namrata
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Kaur, Jagjit
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Bohr, Christoph
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Jena, Ajay Kumar
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Öz, Senol
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Yanagida, Masatoshi
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Shirai, Yasuhiro
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Ikegami, Masashi
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Miyano, Kenjiro
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Tachibana, Yasuhiro
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Chakraborty, Sudip
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Mathur, Sanjay
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Miyasaka, Tsutomu
|b 14
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2882014-9
|a 10.1002/solr.202100077
|g Vol. 5, no. 8, p. 2100077 -
|n 8
|p 2100077
|t Solar RRL
|v 5
|x 2367-198X
|y 2021
856 4 _ |u https://juser.fz-juelich.de/record/902964/files/Solar%20RRL%20-%202021%20-%20Kulkarni%20-%20Concerted%20Ion%20Migration%20and%20Diffusion%E2%80%90Induced%20Degradation%20in%20Lead%E2%80%90Free%20Ag3BiI6%20Rudorffite.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/902964/files/Solar%20RRL%20-%20Main%20text.pdf
|y Published on 2021-06-29. Available in OpenAccess from 2022-06-29.
909 C O |o oai:juser.fz-juelich.de:902964
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)180881
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-121
|1 G:(DE-HGF)POF4-120
|2 G:(DE-HGF)POF4-100
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-1212
|a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|v Photovoltaik und Windenergie
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SOL RRL : 2019
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)3001
|2 StatID
|a DEAL Wiley
|d 2021-01-29
|w ger
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b SOL RRL : 2019
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2021-01-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21