%0 Journal Article
%A Meisenheimer, P. B.
%A Steinhardt, R. A.
%A Sung, S. H.
%A Williams, L. D.
%A Zhuang, S.
%A Nowakowski, M. E.
%A Novakov, S.
%A Torunbalci, M. M.
%A Prasad, B.
%A Zollner, C. J.
%A Wang, Z.
%A Dawley, N. M.
%A Schubert, J.
%A Hunter, A. H.
%A Manipatruni, S.
%A Nikonov, D. E.
%A Young, I. A.
%A Chen, L. Q.
%A Bokor, J.
%A Bhave, S. A.
%A Ramesh, R.
%A Hu, J.-M.
%A Kioupakis, E.
%A Hovden, R.
%A Schlom, D. G.
%A Heron, J. T.
%T Engineering new limits to magnetostriction through metastability in iron-gallium alloys
%J Nature Communications
%V 12
%N 1
%@ 2041-1723
%C [London]
%I Nature Publishing Group UK
%M FZJ-2021-04861
%P 2757
%D 2021
%X Magnetostrictive materials transduce magnetic and mechanical energies and when combinedwith piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magneticfield sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery ofsuperior materials. Fe 1−x Ga x alloys are amongst the highest performing rare-earth-freemagnetostrictive materials; however, magnetostriction becomes sharply suppressed beyondx = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harnessepitaxy to extend the stability of the BCC Fe 1−x Ga x alloy to gallium compositions as high asx = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relativeto the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1−x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90°electrical switching of magnetic anisotropy and a converse magnetoelectric coefficientof 2.0 × 10 −5 s m −1 . When optimally scaled, this high coefficient implies stable switching at~80 aJ per bit.
%F PUB:(DE-HGF)16
%9 Journal Article
%$ pmid:33980848
%U <Go to ISI:>//WOS:000657809400003
%R 10.1038/s41467-021-22793-x
%U https://juser.fz-juelich.de/record/903137