001     903137
005     20220103172040.0
024 7 _ |a 10.1038/s41467-021-22793-x
|2 doi
024 7 _ |a 2128/29397
|2 Handle
024 7 _ |a altmetric:105749099
|2 altmetric
024 7 _ |a pmid:33980848
|2 pmid
024 7 _ |a WOS:000657809400003
|2 WOS
037 _ _ |a FZJ-2021-04861
082 _ _ |a 500
100 1 _ |a Meisenheimer, P. B.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Engineering new limits to magnetostriction through metastability in iron-gallium alloys
260 _ _ |a [London]
|c 2021
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638970612_18831
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetostrictive materials transduce magnetic and mechanical energies and when combinedwith piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magneticfield sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery ofsuperior materials. Fe 1−x Ga x alloys are amongst the highest performing rare-earth-freemagnetostrictive materials; however, magnetostriction becomes sharply suppressed beyondx = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harnessepitaxy to extend the stability of the BCC Fe 1−x Ga x alloy to gallium compositions as high asx = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relativeto the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1−x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90°electrical switching of magnetic anisotropy and a converse magnetoelectric coefficientof 2.0 × 10 −5 s m −1 . When optimally scaled, this high coefficient implies stable switching at~80 aJ per bit.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Steinhardt, R. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sung, S. H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Williams, L. D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhuang, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nowakowski, M. E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Novakov, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Torunbalci, M. M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Prasad, B.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zollner, C. J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wang, Z.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Dawley, N. M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Schubert, J.
|0 P:(DE-Juel1)128631
|b 12
700 1 _ |a Hunter, A. H.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Manipatruni, S.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Nikonov, D. E.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Young, I. A.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Chen, L. Q.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Bokor, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Bhave, S. A.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Ramesh, R.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Hu, J.-M.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Kioupakis, E.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Hovden, R.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Schlom, D. G.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Heron, J. T.
|0 P:(DE-HGF)0
|b 25
|e Corresponding author
773 _ _ |a 10.1038/s41467-021-22793-x
|g Vol. 12, no. 1, p. 2757
|0 PERI:(DE-600)2553671-0
|n 1
|p 2757
|t Nature Communications
|v 12
|y 2021
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/903137/files/Meisenheimer%20Eisen-Gallium-nature%20communications.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903137
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128631
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21