Hauptseite > Publikationsdatenbank > Engineering new limits to magnetostriction through metastability in iron-gallium alloys > print |
001 | 903137 | ||
005 | 20220103172040.0 | ||
024 | 7 | _ | |a 10.1038/s41467-021-22793-x |2 doi |
024 | 7 | _ | |a 2128/29397 |2 Handle |
024 | 7 | _ | |a altmetric:105749099 |2 altmetric |
024 | 7 | _ | |a pmid:33980848 |2 pmid |
024 | 7 | _ | |a WOS:000657809400003 |2 WOS |
037 | _ | _ | |a FZJ-2021-04861 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Meisenheimer, P. B. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Engineering new limits to magnetostriction through metastability in iron-gallium alloys |
260 | _ | _ | |a [London] |c 2021 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1638970612_18831 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Magnetostrictive materials transduce magnetic and mechanical energies and when combinedwith piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magneticfield sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery ofsuperior materials. Fe 1−x Ga x alloys are amongst the highest performing rare-earth-freemagnetostrictive materials; however, magnetostriction becomes sharply suppressed beyondx = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harnessepitaxy to extend the stability of the BCC Fe 1−x Ga x alloy to gallium compositions as high asx = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relativeto the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1−x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90°electrical switching of magnetic anisotropy and a converse magnetoelectric coefficientof 2.0 × 10 −5 s m −1 . When optimally scaled, this high coefficient implies stable switching at~80 aJ per bit. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Steinhardt, R. A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sung, S. H. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Williams, L. D. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Zhuang, S. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Nowakowski, M. E. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Novakov, S. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Torunbalci, M. M. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Prasad, B. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Zollner, C. J. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Wang, Z. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Dawley, N. M. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Schubert, J. |0 P:(DE-Juel1)128631 |b 12 |
700 | 1 | _ | |a Hunter, A. H. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Manipatruni, S. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Nikonov, D. E. |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Young, I. A. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Chen, L. Q. |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Bokor, J. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Bhave, S. A. |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Ramesh, R. |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Hu, J.-M. |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Kioupakis, E. |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Hovden, R. |0 P:(DE-HGF)0 |b 23 |
700 | 1 | _ | |a Schlom, D. G. |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Heron, J. T. |0 P:(DE-HGF)0 |b 25 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41467-021-22793-x |g Vol. 12, no. 1, p. 2757 |0 PERI:(DE-600)2553671-0 |n 1 |p 2757 |t Nature Communications |v 12 |y 2021 |x 2041-1723 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/903137/files/Meisenheimer%20Eisen-Gallium-nature%20communications.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:903137 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)128631 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-02-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|