001     903178
005     20220103172041.0
024 7 _ |a 10.1016/j.envpol.2021.116661
|2 doi
024 7 _ |a 0013-9327
|2 ISSN
024 7 _ |a 0269-7491
|2 ISSN
024 7 _ |a 1873-6424
|2 ISSN
024 7 _ |a 1878-2450
|2 ISSN
024 7 _ |a 2128/29402
|2 Handle
024 7 _ |a altmetric:100156605
|2 altmetric
024 7 _ |a 33592438
|2 pmid
024 7 _ |a WOS:000630774100015
|2 WOS
037 _ _ |a FZJ-2021-04898
082 _ _ |a 690
100 1 _ |a Liang, Yan
|0 P:(DE-Juel1)190852
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638976369_27262
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Natural soils have frequently been considered to decrease the mobility of engineered nanoparticles (NPs) in comparison to quartz sand due to the presence of colloids that provide additional retention sites. In contrast, this study demonstrates that the transport and release of silver nanoparticles (AgNPs) in sandy clay loam and loamy sand soils were enhanced in the presence of soil colloids that altered soil grain surface roughness. In particular, we found that the retention of AgNPs in purified soils (colloid-free and acid-treated) was more pronounced than in raw (untreated) soils or soils treated to remove organic matter (H2O2 or 600 °C treated). Chemical analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy demonstrated that the grain surfaces of raw and organic matter-removed soils were abundant with metal oxides and colloids compared to purified soil. Column transport and release experimental results, SEM images, and interaction energy calculations revealed that a significant amount of concave locations on purified soils hindered AgNP release by diffusion or ionic strength (IS) reduction due to deep primary energy minima. Conversely, AgNPs that were retained in soils in the presence of soil colloids were more susceptible to release under IS reduction because the primary minimum was shallow on the tops of convex locations created by attached soil colloids. Additionally, a considerable fraction of retained AgNPs in raw soil was released after cation exchange followed by IS reduction, while no release occurred for purified soil under the same conditions. The AgNP release was highly associated with soil colloids and co-transport of AgNPs and soil colloids was observed. Our work is the first to show that the presence of soil colloids can inhibit deposition and facilitate the release and co-transport of NPs in soil by alteration of the soil grain surface morphology and shallow primary minimum interactions.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Luo, Yonglu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lu, Zhiwei
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 3
700 1 _ |a Shen, Chongyang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bradford, Scott A.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.envpol.2021.116661
|g Vol. 276, p. 116661 -
|0 PERI:(DE-600)2013037-5
|p 116661 -
|t Environmental pollution
|v 276
|y 2021
|x 0013-9327
856 4 _ |u https://juser.fz-juelich.de/record/903178/files/EP_Liang%20et%20al.%202021.pdf
|y Published on 2021-02-04. Available in OpenAccess from 2023-02-04.
909 C O |o oai:juser.fz-juelich.de:903178
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-04
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON POLLUT : 2019
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON POLLUT : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21