Journal Article FZJ-2021-04898

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport

 ;  ;  ;  ;  ;

2021
Elsevier Science Amsterdam [u.a.]

Environmental pollution 276, 116661 - () [10.1016/j.envpol.2021.116661]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Natural soils have frequently been considered to decrease the mobility of engineered nanoparticles (NPs) in comparison to quartz sand due to the presence of colloids that provide additional retention sites. In contrast, this study demonstrates that the transport and release of silver nanoparticles (AgNPs) in sandy clay loam and loamy sand soils were enhanced in the presence of soil colloids that altered soil grain surface roughness. In particular, we found that the retention of AgNPs in purified soils (colloid-free and acid-treated) was more pronounced than in raw (untreated) soils or soils treated to remove organic matter (H2O2 or 600 °C treated). Chemical analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy demonstrated that the grain surfaces of raw and organic matter-removed soils were abundant with metal oxides and colloids compared to purified soil. Column transport and release experimental results, SEM images, and interaction energy calculations revealed that a significant amount of concave locations on purified soils hindered AgNP release by diffusion or ionic strength (IS) reduction due to deep primary energy minima. Conversely, AgNPs that were retained in soils in the presence of soil colloids were more susceptible to release under IS reduction because the primary minimum was shallow on the tops of convex locations created by attached soil colloids. Additionally, a considerable fraction of retained AgNPs in raw soil was released after cation exchange followed by IS reduction, while no release occurred for purified soil under the same conditions. The AgNP release was highly associated with soil colloids and co-transport of AgNPs and soil colloids was observed. Our work is the first to show that the presence of soil colloids can inhibit deposition and facilitate the release and co-transport of NPs in soil by alteration of the soil grain surface morphology and shallow primary minimum interactions.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-12-03, last modified 2022-01-03


Published on 2021-02-04. Available in OpenAccess from 2023-02-04.:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)