000903244 001__ 903244 000903244 005__ 20250129092417.0 000903244 0247_ $$2doi$$a10.1016/j.ppnp.2021.103927 000903244 0247_ $$2ISSN$$a0146-6410 000903244 0247_ $$2ISSN$$a1873-2224 000903244 0247_ $$2Handle$$a2128/29341 000903244 0247_ $$2WOS$$aWOS:000748726700002 000903244 0247_ $$2altmetric$$aaltmetric:103413981 000903244 037__ $$aFZJ-2021-04951 000903244 041__ $$aEnglish 000903244 082__ $$a530 000903244 1001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b0 000903244 245__ $$aJUNO physics and detector 000903244 260__ $$aFrankfurt, M.$$bPergamon Press$$c2021 000903244 3367_ $$2DRIVER$$aarticle 000903244 3367_ $$2DataCite$$aOutput Types/Journal article 000903244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638879782_24809 000903244 3367_ $$2BibTeX$$aARTICLE 000903244 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000903244 3367_ $$00$$2EndNote$$aJournal Article 000903244 520__ $$aThe Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3-4 significance and the neutrino oscillation parameters , , and can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3 significance; a lower limit of the proton lifetime, years (90% C.L.), can be set by searching for ; detection of solar neutrinos would shed new light on the solar metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to inverse-beta-decay events and (300) all-flavor neutrino-proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTs have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTs and 28.1% for the 5,000 dynode PMTs, higher than the JUNO requirement of 27%. Together with the m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to mBq/m. Acrylic panels of radiopurity ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to . The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTs, a liquid scintillator testing facility OSIRIS, and a near detector TAO. 000903244 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0 000903244 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000903244 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0 000903244 7001_ $$0P:(DE-Juel1)168561$$aGenster, Christoph$$b1$$ufzj 000903244 7001_ $$0P:(DE-Juel1)177019$$aGöttel, Alexandre$$b2$$ufzj 000903244 7001_ $$0P:(DE-Juel1)180179$$aGuo, Yuhang$$b3 000903244 7001_ $$0P:(DE-Juel1)171633$$aKampmann, Philipp$$b4$$ufzj 000903244 7001_ $$0P:(DE-Juel1)179374$$aLiu, Runxuan$$b5$$ufzj 000903244 7001_ $$0P:(DE-Juel1)168122$$aLudhova, Livia$$b6$$ufzj 000903244 7001_ $$0P:(DE-Juel1)169445$$aSchever, Michaela$$b7 000903244 7001_ $$0P:(DE-Juel1)180506$$aSettanta, Giulio$$b8$$ufzj 000903244 7001_ $$0P:(DE-Juel1)179551$$aVollbrecht, Moritz Cornelius$$b9$$ufzj 000903244 7001_ $$0P:(DE-Juel1)171744$$aXu, Yu$$b10 000903244 773__ $$0PERI:(DE-600)1469125-5$$a10.1016/j.ppnp.2021.103927$$gp. 103927 -$$p103927$$tProgress in particle and nuclear physics$$v122$$x0146-6410$$y2021 000903244 8564_ $$uhttps://juser.fz-juelich.de/record/903244/files/2104.02565.pdf$$yOpenAccess 000903244 909CO $$ooai:juser.fz-juelich.de:903244$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b0$$kFZJ 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168561$$aForschungszentrum Jülich$$b1$$kFZJ 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177019$$aForschungszentrum Jülich$$b2$$kFZJ 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171633$$aForschungszentrum Jülich$$b4$$kFZJ 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179374$$aForschungszentrum Jülich$$b5$$kFZJ 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168122$$aForschungszentrum Jülich$$b6$$kFZJ 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180506$$aForschungszentrum Jülich$$b8$$kFZJ 000903244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179551$$aForschungszentrum Jülich$$b9$$kFZJ 000903244 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0 000903244 9141_ $$y2021 000903244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPROG PART NUCL PHYS : 2019$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000903244 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROG PART NUCL PHYS : 2019$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30 000903244 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger 000903244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30 000903244 920__ $$lyes 000903244 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0 000903244 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x1 000903244 9801_ $$aFullTexts 000903244 980__ $$ajournal 000903244 980__ $$aVDB 000903244 980__ $$aI:(DE-Juel1)ZEA-2-20090406 000903244 980__ $$aI:(DE-Juel1)IKP-2-20111104 000903244 980__ $$aUNRESTRICTED 000903244 981__ $$aI:(DE-Juel1)PGI-4-20110106