Journal Article FZJ-2021-04951

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
JUNO physics and detector

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Pergamon Press Frankfurt, M.

Progress in particle and nuclear physics 122, 103927 () [10.1016/j.ppnp.2021.103927]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3-4 significance and the neutrino oscillation parameters , , and can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3 significance; a lower limit of the proton lifetime, years (90% C.L.), can be set by searching for ; detection of solar neutrinos would shed new light on the solar metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to inverse-beta-decay events and (300) all-flavor neutrino-proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTs have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTs and 28.1% for the 5,000 dynode PMTs, higher than the JUNO requirement of 27%. Together with the m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to mBq/m. Acrylic panels of radiopurity ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to . The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTs, a liquid scintillator testing facility OSIRIS, and a near detector TAO.

Classification:

Contributing Institute(s):
  1. Zentralinstitut für Elektronik (ZEA-2)
  2. Experimentelle Hadrondynamik (IKP-2)
Research Program(s):
  1. 612 - Cosmic Matter in the Laboratory (POF4-612) (POF4-612)
Experiment(s):
  1. Measurement at external facility

Appears in the scientific report 2021
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IKP > IKP-2
Institute Collections > ZEA > ZEA-2
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-12-06, last modified 2025-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)