000904012 001__ 904012
000904012 005__ 20240711085626.0
000904012 0247_ $$2doi$$a10.1002/aenm.202102972
000904012 0247_ $$2ISSN$$a1614-6832
000904012 0247_ $$2ISSN$$a1614-6840
000904012 0247_ $$2Handle$$a2128/30641
000904012 0247_ $$2altmetric$$aaltmetric:116938864
000904012 0247_ $$2WOS$$aWOS:000718209700001
000904012 037__ $$aFZJ-2021-05582
000904012 082__ $$a050
000904012 1001_ $$0P:(DE-HGF)0$$aXia, Rui$$b0
000904012 245__ $$aNickel Niobate Anodes for High Rate Lithium‐Ion Batteries
000904012 260__ $$aWeinheim$$bWiley-VCH$$c2022
000904012 3367_ $$2DRIVER$$aarticle
000904012 3367_ $$2DataCite$$aOutput Types/Journal article
000904012 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643786032_20348
000904012 3367_ $$2BibTeX$$aARTICLE
000904012 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904012 3367_ $$00$$2EndNote$$aJournal Article
000904012 520__ $$aFast charging is one of the key requirements for next-generation lithium-ion batteries, however, lithium-ion diffusion rates of typical electrode materials are limited. Nanosizing of active electrode material is a common strategy to increase the effective lithium-ion diffusion transport rate, but it also decreases the volumetric energy/power density and stability of the battery. In this work, nickel niobate NiNb2O6 is demonstrated for the first time as a new intrinsic high-rate anode material for lithium-ion batteries without the requirement of realizing nano-architectures. The NiNb2O6 host crystal structure exhibits only a single type of channel for lithium-ion intercalation and can be fully lithiated with a capacity of about 244 mAh g−1 at low current densities. Interestingly, a high diffusion coefficient of 10−12 cm2 s−1 at 300 K enables fast (dis)charging at high current densities resulting in high capacities of 140 and 50 mAh g−1 for 10 and 100C respectively. The minimal volume change during lithiation is the origin of the stable reversible lithiation process in NiNb2O6 and leads to 81% capacity retention after 20 000 cycles at 100C. Finally, full cell systems against LiFePO4 and Li[Ni0.8Co0.1Mn0.1]O2 (NCM811) cathodes demonstrate the promising energy storage performance of nickel niobate anodes in practical battery devices.
000904012 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000904012 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904012 7001_ $$0P:(DE-HGF)0$$aZhao, Kangning$$b1
000904012 7001_ $$0P:(DE-Juel1)178838$$aKuo, Liang-Yin$$b2$$ufzj
000904012 7001_ $$aZhang, Lei$$b3
000904012 7001_ $$0P:(DE-HGF)0$$aCunha, Daniel M.$$b4
000904012 7001_ $$0P:(DE-HGF)0$$aWang, Yang$$b5
000904012 7001_ $$0P:(DE-HGF)0$$aHuang, Sizhao$$b6
000904012 7001_ $$0P:(DE-HGF)0$$aZheng, Jie$$b7
000904012 7001_ $$0P:(DE-HGF)0$$aBoukamp, Bernard$$b8
000904012 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b9$$eCorresponding author
000904012 7001_ $$0P:(DE-HGF)0$$aSun, Congli$$b10
000904012 7001_ $$00000-0001-7995-6571$$aten Elshof, Johan E.$$b11
000904012 7001_ $$0P:(DE-Juel1)174222$$aHuijben, Mark$$b12$$eCorresponding author
000904012 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202102972$$gp. 2102972 -$$n1$$p2102972 -$$tAdvanced energy materials$$v12$$x1614-6832$$y2022
000904012 8564_ $$uhttps://juser.fz-juelich.de/record/904012/files/Advanced%20Energy%20Materials%20-%202021%20-%20Xia%20-%20Nickel%20Niobate%20Anodes%20for%20High%20Rate%20Lithium%25u2010Ion%20Batteries.pdf$$yOpenAccess
000904012 909CO $$ooai:juser.fz-juelich.de:904012$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178838$$aForschungszentrum Jülich$$b2$$kFZJ
000904012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b9$$kFZJ
000904012 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000904012 9141_ $$y2022
000904012 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904012 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904012 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000904012 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904012 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904012 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2021$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000904012 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2021$$d2022-11-12
000904012 920__ $$lyes
000904012 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000904012 9801_ $$aFullTexts
000904012 980__ $$ajournal
000904012 980__ $$aVDB
000904012 980__ $$aUNRESTRICTED
000904012 980__ $$aI:(DE-Juel1)IEK-1-20101013
000904012 981__ $$aI:(DE-Juel1)IMD-2-20101013