000904018 001__ 904018
000904018 005__ 20220126162548.0
000904018 0247_ $$2doi$$a10.1016/j.impact.2021.100303
000904018 0247_ $$2Handle$$a2128/29912
000904018 0247_ $$2WOS$$aWOS:000656874800008
000904018 037__ $$aFZJ-2021-05588
000904018 082__ $$a610
000904018 1001_ $$0P:(DE-HGF)0$$aPolitowski, Irina$$b0$$eCorresponding author
000904018 245__ $$aA trophic transfer study: accumulation of multi-walled carbon nanotubes associated to green algae in water flea Daphnia magna
000904018 260__ $$aAmsterdam$$bElsevier$$c2021
000904018 3367_ $$2DRIVER$$aarticle
000904018 3367_ $$2DataCite$$aOutput Types/Journal article
000904018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641393211_15140
000904018 3367_ $$2BibTeX$$aARTICLE
000904018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904018 3367_ $$00$$2EndNote$$aJournal Article
000904018 520__ $$aCarbon nanotubes (CNT) are promising nanomaterials in modern nanotechnology and their use in many different applications leads to an inevitable release into the aquatic environment. In this study, we quantified trophic transfer of weathered multi-walled carbon nanotubes (wMWCNT) from green algae to primary consumer Daphnia magna in a concentration of 100 μg L−1 using radioactive labeling of the carbon backbone (14C-wMWCNT). Trophic transfer of wMWCNT was compared to the uptake by daphnids exposed to nanomaterials in the water phase without algae. Due to the rather long observed CNT sedimentation times (DT) from the water phase (DT50: 3.9 days (d), DT90: 12.8 d) wMWCNT interact with aquatic organisms and associated to the green algae Chlamydomonas reinhardtii and Raphidocelis subcapitata. After the exposition of algae, the nanotubes accumulated to a maximum of 1.6 ± 0.4 μg 14C-wMWCNT mg−1 dry weight−1 (dw−1) and 0.7 ± 0.3 μg 14C-wMWCNT mg−1 dw−1 after 24 h and 48 h, respectively. To study trophic transfer, R. subcapitata was loaded with 14C-wMWCNT and subsequently fed to D. magna. A maximum body burden of 0.07 ± 0.01 μg 14C-wMWCNT mg−1 dw−1 and 7.1 ± 1.5 μg 14C-wMWCNT mg−1 dw−1 for D. magna after trophic transfer and waterborne exposure was measured, respectively, indicating no CNT accumulation after short-term exposure via trophic transfer. Additionally, the animals eliminated nanomaterials from their guts, while feeding algae facilitated their excretion. Further, accumulation of 14C-wMWCNT in a growing population of D. magna revealed a maximum uptake of 0.7 ± 0.2 μg mg−1 dw−1. Therefore, the calculated bioaccumulation factor (BAF) after 28 d of 6700 ± 2900 L kg−1 is above the limit that indicates a chemical is bioaccumulative in the European Union Regulation REACH. Although wMWCNT did not bioaccumulate in neonate D. magna after trophic transfer, wMWCNT enriched in a 28 d growing D. magna population regardless of daily feeding, which increases the risk of CNT accumulation along the aquatic food chain.
000904018 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904018 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904018 7001_ $$0P:(DE-HGF)0$$aWittmers, Fabian$$b1
000904018 7001_ $$0P:(DE-HGF)0$$aHennig, Michael Patrick$$b2
000904018 7001_ $$0P:(DE-Juel1)164361$$aSiebers, Nina$$b3
000904018 7001_ $$0P:(DE-HGF)0$$aGoffart, Birgitta$$b4
000904018 7001_ $$0P:(DE-HGF)0$$aRoß-Nickoll, Martina$$b5
000904018 7001_ $$0P:(DE-HGF)0$$aOttermanns, Richard$$b6
000904018 7001_ $$0P:(DE-HGF)0$$aSchäffer, Andreas$$b7
000904018 773__ $$0PERI:(DE-600)2847368-1$$a10.1016/j.impact.2021.100303$$gVol. 22, p. 100303 -$$p100303 -$$tNanoImpact$$v22$$x2452-0748$$y2021
000904018 8564_ $$uhttps://juser.fz-juelich.de/record/904018/files/NanoImpact_postprint.pdf$$yPublished on 2021-03-19. Available in OpenAccess from 2022-03-19.
000904018 909CO $$ooai:juser.fz-juelich.de:904018$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b3$$kFZJ
000904018 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904018 9141_ $$y2021
000904018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOIMPACT : 2019$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOIMPACT : 2019$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904018 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000904018 980__ $$ajournal
000904018 980__ $$aVDB
000904018 980__ $$aUNRESTRICTED
000904018 980__ $$aI:(DE-Juel1)IBG-3-20101118
000904018 9801_ $$aFullTexts