Journal Article FZJ-2021-05588

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A trophic transfer study: accumulation of multi-walled carbon nanotubes associated to green algae in water flea Daphnia magna

 ;  ;  ;  ;  ;  ;  ;

2021
Elsevier Amsterdam

NanoImpact 22, 100303 - () [10.1016/j.impact.2021.100303]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Carbon nanotubes (CNT) are promising nanomaterials in modern nanotechnology and their use in many different applications leads to an inevitable release into the aquatic environment. In this study, we quantified trophic transfer of weathered multi-walled carbon nanotubes (wMWCNT) from green algae to primary consumer Daphnia magna in a concentration of 100 μg L−1 using radioactive labeling of the carbon backbone (14C-wMWCNT). Trophic transfer of wMWCNT was compared to the uptake by daphnids exposed to nanomaterials in the water phase without algae. Due to the rather long observed CNT sedimentation times (DT) from the water phase (DT50: 3.9 days (d), DT90: 12.8 d) wMWCNT interact with aquatic organisms and associated to the green algae Chlamydomonas reinhardtii and Raphidocelis subcapitata. After the exposition of algae, the nanotubes accumulated to a maximum of 1.6 ± 0.4 μg 14C-wMWCNT mg−1 dry weight−1 (dw−1) and 0.7 ± 0.3 μg 14C-wMWCNT mg−1 dw−1 after 24 h and 48 h, respectively. To study trophic transfer, R. subcapitata was loaded with 14C-wMWCNT and subsequently fed to D. magna. A maximum body burden of 0.07 ± 0.01 μg 14C-wMWCNT mg−1 dw−1 and 7.1 ± 1.5 μg 14C-wMWCNT mg−1 dw−1 for D. magna after trophic transfer and waterborne exposure was measured, respectively, indicating no CNT accumulation after short-term exposure via trophic transfer. Additionally, the animals eliminated nanomaterials from their guts, while feeding algae facilitated their excretion. Further, accumulation of 14C-wMWCNT in a growing population of D. magna revealed a maximum uptake of 0.7 ± 0.2 μg mg−1 dw−1. Therefore, the calculated bioaccumulation factor (BAF) after 28 d of 6700 ± 2900 L kg−1 is above the limit that indicates a chemical is bioaccumulative in the European Union Regulation REACH. Although wMWCNT did not bioaccumulate in neonate D. magna after trophic transfer, wMWCNT enriched in a 28 d growing D. magna population regardless of daily feeding, which increases the risk of CNT accumulation along the aquatic food chain.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-12-24, last modified 2022-01-26


Published on 2021-03-19. Available in OpenAccess from 2022-03-19.:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)