000904032 001__ 904032
000904032 005__ 20240711113815.0
000904032 0247_ $$2doi$$a10.1088/1741-4326/abfcde
000904032 0247_ $$2ISSN$$a0029-5515
000904032 0247_ $$2ISSN$$a1741-4326
000904032 0247_ $$2Handle$$a2128/29915
000904032 0247_ $$2altmetric$$aaltmetric:106935379
000904032 0247_ $$2WOS$$aWOS:000656670200001
000904032 037__ $$aFZJ-2021-05602
000904032 082__ $$a620
000904032 1001_ $$00000-0001-9835-5085$$aAlberti, G.$$b0
000904032 245__ $$aERO2.0 modelling of nanoscale surface morphology evolution
000904032 260__ $$aVienna$$bIAEA$$c2021
000904032 3367_ $$2DRIVER$$aarticle
000904032 3367_ $$2DataCite$$aOutput Types/Journal article
000904032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641393953_12144
000904032 3367_ $$2BibTeX$$aARTICLE
000904032 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904032 3367_ $$00$$2EndNote$$aJournal Article
000904032 520__ $$aPlasma–material interaction (PMI) in tokamaks determines the life-time of first-wall (FW) components. Due to PMI, FW materials are eroded and transported within the device. Erosion is strongly influenced by the original morphology of the component, due to particle redeposition on near surface structures and to the changing of impact angle distributions, which results in an alteration of the sputtering effects. The Monte-Carlo impurity transport code ERO2.0 is capable of modelling the erosion of non-trivial surface morphologies due to plasma irradiation. The surface morphology module was validated against experimental data with satisfactory agreement. In this work, we further progress in the validation of the ERO2.0 capabilities by modelling both numerically generated surfaces as well as real surfaces, generated using atomic force microscopy (AFM) measurements of reference tungsten samples. The former are used to validate ERO2.0 against one of the morphology evolution models present in literature, in order to outline the conditions for reliable code solutions. Modifications induced in AFM-generated surfaces after argon and helium plasma irradiation are compared, showing a similar post-exposure morphology, mostly dominated by surface smoothing. Finally, the ERO2.0 morphology retrieved after He plasma exposure is compared to experimentally-available scanning electron microscopy and AFM measurements of the same surface morphology exposed in the linear plasma device GyM, showing the need for further improvements of the code, while a good agreement between experimental and simulated erosion rate is observed.
000904032 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000904032 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904032 7001_ $$00000-0002-6244-7612$$aSala, M.$$b1
000904032 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b2$$eCorresponding author
000904032 7001_ $$00000-0003-3044-1715$$aUccello, A.$$b3
000904032 7001_ $$00000-0002-7389-9307$$aDellasega, D.$$b4
000904032 7001_ $$00000-0002-7844-3691$$aPassoni, M.$$b5
000904032 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/abfcde$$gVol. 61, no. 6, p. 066039 -$$n6$$p066039 -$$tNuclear fusion$$v61$$x0029-5515$$y2021
000904032 8564_ $$uhttps://juser.fz-juelich.de/record/904032/files/Alberti_2021_Nucl._Fusion_61_066039.pdf$$yRestricted
000904032 8564_ $$uhttps://juser.fz-juelich.de/record/904032/files/ERO2.0%20modelling.pdf$$yOpenAccess
000904032 909CO $$ooai:juser.fz-juelich.de:904032$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b2$$kFZJ
000904032 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000904032 9141_ $$y2021
000904032 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904032 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904032 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904032 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000904032 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904032 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000904032 9801_ $$aFullTexts
000904032 980__ $$ajournal
000904032 980__ $$aVDB
000904032 980__ $$aUNRESTRICTED
000904032 980__ $$aI:(DE-Juel1)IEK-4-20101013
000904032 981__ $$aI:(DE-Juel1)IFN-1-20101013