000904032 001__ 904032 000904032 005__ 20240711113815.0 000904032 0247_ $$2doi$$a10.1088/1741-4326/abfcde 000904032 0247_ $$2ISSN$$a0029-5515 000904032 0247_ $$2ISSN$$a1741-4326 000904032 0247_ $$2Handle$$a2128/29915 000904032 0247_ $$2altmetric$$aaltmetric:106935379 000904032 0247_ $$2WOS$$aWOS:000656670200001 000904032 037__ $$aFZJ-2021-05602 000904032 082__ $$a620 000904032 1001_ $$00000-0001-9835-5085$$aAlberti, G.$$b0 000904032 245__ $$aERO2.0 modelling of nanoscale surface morphology evolution 000904032 260__ $$aVienna$$bIAEA$$c2021 000904032 3367_ $$2DRIVER$$aarticle 000904032 3367_ $$2DataCite$$aOutput Types/Journal article 000904032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641393953_12144 000904032 3367_ $$2BibTeX$$aARTICLE 000904032 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000904032 3367_ $$00$$2EndNote$$aJournal Article 000904032 520__ $$aPlasma–material interaction (PMI) in tokamaks determines the life-time of first-wall (FW) components. Due to PMI, FW materials are eroded and transported within the device. Erosion is strongly influenced by the original morphology of the component, due to particle redeposition on near surface structures and to the changing of impact angle distributions, which results in an alteration of the sputtering effects. The Monte-Carlo impurity transport code ERO2.0 is capable of modelling the erosion of non-trivial surface morphologies due to plasma irradiation. The surface morphology module was validated against experimental data with satisfactory agreement. In this work, we further progress in the validation of the ERO2.0 capabilities by modelling both numerically generated surfaces as well as real surfaces, generated using atomic force microscopy (AFM) measurements of reference tungsten samples. The former are used to validate ERO2.0 against one of the morphology evolution models present in literature, in order to outline the conditions for reliable code solutions. Modifications induced in AFM-generated surfaces after argon and helium plasma irradiation are compared, showing a similar post-exposure morphology, mostly dominated by surface smoothing. Finally, the ERO2.0 morphology retrieved after He plasma exposure is compared to experimentally-available scanning electron microscopy and AFM measurements of the same surface morphology exposed in the linear plasma device GyM, showing the need for further improvements of the code, while a good agreement between experimental and simulated erosion rate is observed. 000904032 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0 000904032 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000904032 7001_ $$00000-0002-6244-7612$$aSala, M.$$b1 000904032 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b2$$eCorresponding author 000904032 7001_ $$00000-0003-3044-1715$$aUccello, A.$$b3 000904032 7001_ $$00000-0002-7389-9307$$aDellasega, D.$$b4 000904032 7001_ $$00000-0002-7844-3691$$aPassoni, M.$$b5 000904032 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/abfcde$$gVol. 61, no. 6, p. 066039 -$$n6$$p066039 -$$tNuclear fusion$$v61$$x0029-5515$$y2021 000904032 8564_ $$uhttps://juser.fz-juelich.de/record/904032/files/Alberti_2021_Nucl._Fusion_61_066039.pdf$$yRestricted 000904032 8564_ $$uhttps://juser.fz-juelich.de/record/904032/files/ERO2.0%20modelling.pdf$$yOpenAccess 000904032 909CO $$ooai:juser.fz-juelich.de:904032$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000904032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b2$$kFZJ 000904032 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0 000904032 9141_ $$y2021 000904032 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2019$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000904032 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger 000904032 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27 000904032 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger 000904032 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27 000904032 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000904032 9801_ $$aFullTexts 000904032 980__ $$ajournal 000904032 980__ $$aVDB 000904032 980__ $$aUNRESTRICTED 000904032 980__ $$aI:(DE-Juel1)IEK-4-20101013 000904032 981__ $$aI:(DE-Juel1)IFN-1-20101013