001     904106
005     20240712084513.0
024 7 _ |a 10.1002/pip.3333
|2 doi
024 7 _ |a 1062-7995
|2 ISSN
024 7 _ |a 1099-159X
|2 ISSN
024 7 _ |a 2128/30271
|2 Handle
024 7 _ |a WOS:000562546600001
|2 WOS
037 _ _ |a FZJ-2021-05676
082 _ _ |a 690
100 1 _ |a Li, Shenghao
|0 P:(DE-Juel1)174415
|b 0
245 _ _ |a High‐quality amorphous silicon thin films for tunnel oxide passivating contacts deposited at over 150 nm/min
260 _ _ |a Chichester
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642413949_26836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hot-wire chemical vapor deposition was utilized to develop rapidly grown and high-quality phosphorus-doped amorphous silicon (a-Si:H) thin films for poly-crystalline silicon on tunnel oxide carrier-selective passivating contacts. Deposition rates higher than 150 nm/min were obtained for the in situ phosphorus-doped a-Si:H layers. To optimize the passivating contact performance, material properties such as microstructures as well as hydrogen content were characterized and analyzed for these phosphorus-doped a-Si:H films. The results show that a certain microstructure of the films is crucial for the passivation quality and the conductance of passivating contacts. Porous silicon layers were severely oxidized during high-temperature crystallization, giving rise to very low conductance. The insufficient effective doping concentration in these layers also yields inferior passivation quality due to lack of field-effect passivation. On the other hand, dense silicon layers are insensitive to oxidation but very sensitive to blistering of the films during the subsequent high-temperature process steps. By optimizing the deposition parameters, a firing-stable-implied open-circuit voltage of 737 mV and a contact resistivity of 10 mΩ·cm2 were achieved at a high deposition rate of 100 nm/min while 733 mV and 90 mΩ·cm2 were achieved at an even higher deposition rate of 150 nm/min.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben: TuKaN - Tunnelkontakte auf N-Typ: für die Metallisierung mit Siebdruck, Teilvorhaben: Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer und plasmaunterstützter chemischer Gasphasenab (0324198D)
|0 G:(BMWi)0324198D
|c 0324198D
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 1
700 1 _ |a Hoß, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lossen, Jan
|0 0000-0003-4981-8674
|b 3
700 1 _ |a Qiu, Kaifu
|0 P:(DE-Juel1)178049
|b 4
700 1 _ |a Hong, Ruijiang
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 6
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 7
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 8
|e Corresponding author
773 _ _ |a 10.1002/pip.3333
|g Vol. 29, no. 1, p. 16 - 23
|0 PERI:(DE-600)2023295-0
|n 1
|p 16 - 23
|t Progress in photovoltaics
|v 29
|y 2021
|x 1062-7995
856 4 _ |u https://juser.fz-juelich.de/record/904106/files/Progress%20in%20Photovoltaics%20-%202020%20-%20Li%20-%20High%25u2010quality%20amorphous%20silicon%20thin%20films%20for%20tunnel%20oxide%20passivating%20contacts.pdf
|y Restricted
856 4 _ |y Published on 2020-08-26. Available in OpenAccess from 2021-08-26.
|u https://juser.fz-juelich.de/record/904106/files/Pre-print%20Shenghao.pdf
909 C O |o oai:juser.fz-juelich.de:904106
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-Juel1)174415
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162141
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0003-4981-8674
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROG PHOTOVOLTAICS : 2019
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PROG PHOTOVOLTAICS : 2019
|d 2021-02-02
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21