| 001 | 904121 | ||
| 005 | 20240712084513.0 | ||
| 024 | 7 | _ | |a 10.1002/solr.202100644 |2 doi |
| 024 | 7 | _ | |a WOS:000697207000001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-05691 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Yang, Qing |0 P:(DE-Juel1)188101 |b 0 |u fzj |
| 245 | _ | _ | |a Passivating Contact with Phosphorus‐Doped Polycrystalline Silicon‐Nitride with an Excellent Implied Open‐Circuit Voltage of 745 mV and Its Application in 23.88% Efficiency TOPCon Solar Cells |
| 260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674127655_20397 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a A P-doped polycrystalline silicon-nitride (n-poly-SiN x ) as the electron selective collection layer in a tunnel oxide passivated contact (TOPCon) solar cell is reported. The nitrogen content is controlled by the active gas ratio of R = NH3/(SiH4 + NH3) during the plasma-enhanced chemical vapor deposition (PECVD) process. The effects of R ratio on the material's composition, crystallinity, surface passivation, and contact resistivity are investigated. The poly-SiN x contact exhibits improved surface passivation in comparison with the reference poly-Si without N incorporation. The best double-sided passivated n-type alkaline-polished crystalline silicon wafer with the n-poly-SiN x /SiO x manifests the highest implied open-circuit voltage (iV oc) of ≈745 mV, with the corresponding single-sided saturated current density of 1.7 fA cm−2 and the effective lifetime (τ eff) of 10 ms at the injection level of ≈1 × 1015 cm−3. In contrast, the controlled sample with an n-poly-Si/SiO x passivation contact has a maximal iV oc of 738 mV. However, the primary drawback of the N doping is to raise the contact resistivity, but which is still in an acceptable range and shows little effect on the performance of solar cell with full-area contact. The proof-of-concept TOPCon solar cell using the n-poly-SiN x /SiO x passivating contact has achieved an efficiency of 23.88%, indicating the potential of the n-poly-SiN x for high-efficiency TOPCon solar cells. |
| 536 | _ | _ | |a 1213 - Cell Design and Development (POF4-121) |0 G:(DE-HGF)POF4-1213 |c POF4-121 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Liu, Zunke |b 1 |
| 700 | 1 | _ | |a Lin, Yiran |b 2 |
| 700 | 1 | _ | |a Liu, Wei |b 3 |
| 700 | 1 | _ | |a Liao, Mingdun |b 4 |
| 700 | 1 | _ | |a Feng, Mengmeng |b 5 |
| 700 | 1 | _ | |a Zhi, Yuyan |b 6 |
| 700 | 1 | _ | |a Zheng, Jingming |b 7 |
| 700 | 1 | _ | |a Lu, Linna |b 8 |
| 700 | 1 | _ | |a Ma, Dian |b 9 |
| 700 | 1 | _ | |a Han, Qingling |b 10 |
| 700 | 1 | _ | |a Cheng, Hao |b 11 |
| 700 | 1 | _ | |a Yang, Zhenhai |b 12 |
| 700 | 1 | _ | |a Ding, Kaining |0 P:(DE-Juel1)130233 |b 13 |
| 700 | 1 | _ | |a Duan, Weiyuan |0 P:(DE-Juel1)169946 |b 14 |
| 700 | 1 | _ | |a Chen, Hui |b 15 |
| 700 | 1 | _ | |a Wang, Yuming |b 16 |
| 700 | 1 | _ | |a Zeng, Yuheng |0 0000-0002-0193-9971 |b 17 |
| 700 | 1 | _ | |a Yan, Baojie |b 18 |
| 700 | 1 | _ | |a Ye, Jichun |0 P:(DE-HGF)0 |b 19 |e Corresponding author |
| 773 | _ | _ | |a 10.1002/solr.202100644 |g Vol. 5, no. 11, p. 2100644 - |0 PERI:(DE-600)2882014-9 |n 11 |p 2100644 - |t Solar RRL |v 5 |y 2021 |x 2367-198X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904121/files/Solar%20RRL%20-%202021%20-%20Yang%20-%20Passivating%20Contact%20with%20Phosphorus%25u2010Doped%20Polycrystalline%20Silicon%25u2010Nitride%20with%20an%20Excellent.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:904121 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188101 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)130233 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)169946 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1213 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-29 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOL RRL : 2019 |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-29 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b SOL RRL : 2019 |d 2021-01-29 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|