000904163 001__ 904163 000904163 005__ 20240712112826.0 000904163 0247_ $$2doi$$a10.1016/j.powera.2021.100056 000904163 0247_ $$2Handle$$a2128/29861 000904163 0247_ $$2altmetric$$aaltmetric:105291889 000904163 0247_ $$2WOS$$aWOS:000662271100002 000904163 037__ $$aFZJ-2021-05733 000904163 082__ $$a621.3 000904163 1001_ $$0P:(DE-Juel1)186070$$aChayambuka, Kudakwashe$$b0 000904163 245__ $$aDetermination of state-of-charge dependent diffusion coefficients and kinetic rate constants of phase changing electrode materials using physics-based models 000904163 260__ $$a[Amsterdam]$$bElsevier ScienceDirect$$c2021 000904163 3367_ $$2DRIVER$$aarticle 000904163 3367_ $$2DataCite$$aOutput Types/Journal article 000904163 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714998391_17176 000904163 3367_ $$2BibTeX$$aARTICLE 000904163 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000904163 3367_ $$00$$2EndNote$$aJournal Article 000904163 520__ $$aThe simplified gravimetric intermittent titration technique (GITT) model, which was first proposed by Weppner and Huggins in 1977, remains a popular method to determine the solid-state diffusion coefficient () and the electrochemical kinetic rate constant (). This is despite the model having been developed on the premise of a single-slab electrode and other gross simplification which are not applicable to modern-day porous battery electrodes. Recently however, more realistic and conceptually descriptive models have emerged, which make use of the increased availability of computational power. Chief among them is the P2D model developed by Newman et al., which has been validated for various porous battery electrodes. Herein, a P2D GITT model is presented and coupled with grid search optimization to determine state-of-charge (SOC) dependent and parameters for a sodium-ion battery (SIB) cathode. Using this approach, experimental GITT steps could be well fitted and thus validated at different SOC points. This work demonstrates the first usage of the P2D GITT model coupled with optimization as an analytical method to derive and validate physically meaningful parameters. The accurate knowledge of and as a function of the SOC gives further insight into the SIB intercalation dynamics and rate capability. 000904163 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0 000904163 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000904163 7001_ $$00000-0002-8726-621X$$aMulder, Grietus$$b1 000904163 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri$$b2$$ufzj 000904163 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b3$$eCorresponding author$$ufzj 000904163 773__ $$0PERI:(DE-600)3022892-X$$a10.1016/j.powera.2021.100056$$gVol. 9, p. 100056 -$$p100056 -$$tJournal of power sources advances$$v9$$x2666-2485$$y2021 000904163 8564_ $$uhttps://juser.fz-juelich.de/record/904163/files/1-s2.0-S2666248521000111-main.pdf$$yOpenAccess 000904163 8767_ $$8BPI/INT/SER/21-22/16121DBP$$92022-05-24$$a1200181659$$d2022-06-09$$ePublication charges$$jZahlung erfolgt$$zFZJ-2022-02282 ; USD 130,- 000904163 909CO $$ooai:juser.fz-juelich.de:904163$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000904163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186070$$aForschungszentrum Jülich$$b0$$kFZJ 000904163 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)186070$$a Eindhoven University of Technology$$b0 000904163 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)186070$$a VITO, Belgium$$b0 000904163 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)186070$$a EnergyVille, Belgium$$b0 000904163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b2$$kFZJ 000904163 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173719$$a Eindhoven University of Technology$$b2 000904163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b3$$kFZJ 000904163 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a Eindhoven University of Technology$$b3 000904163 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a Sydney University of Technology$$b3 000904163 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000904163 9141_ $$y2021 000904163 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000904163 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000904163 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000904163 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000904163 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCE ADV : 2022$$d2023-10-27 000904163 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27 000904163 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-12-18T10:43:15Z 000904163 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-12-18T10:43:15Z 000904163 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2020-12-18T10:43:15Z 000904163 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27 000904163 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27 000904163 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27 000904163 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27 000904163 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27 000904163 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27 000904163 920__ $$lyes 000904163 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000904163 9801_ $$aAPC 000904163 9801_ $$aFullTexts 000904163 980__ $$ajournal 000904163 980__ $$aVDB 000904163 980__ $$aI:(DE-Juel1)IEK-9-20110218 000904163 980__ $$aAPC 000904163 980__ $$aUNRESTRICTED 000904163 981__ $$aI:(DE-Juel1)IET-1-20110218