000904183 001__ 904183
000904183 005__ 20240712112913.0
000904183 0247_ $$2doi$$a10.1038/s41560-020-00771-9
000904183 0247_ $$2Handle$$a2128/30565
000904183 0247_ $$2altmetric$$aaltmetric:99411051
000904183 0247_ $$2WOS$$aWOS:000614670900001
000904183 037__ $$aFZJ-2021-05753
000904183 082__ $$a330
000904183 1001_ $$0P:(DE-HGF)0$$aDeutz, Sarah$$b0
000904183 245__ $$aLife-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption
000904183 260__ $$aLondon$$bNature Publishing Group$$c2021
000904183 3367_ $$2DRIVER$$aarticle
000904183 3367_ $$2DataCite$$aOutput Types/Journal article
000904183 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643190774_8201
000904183 3367_ $$2BibTeX$$aARTICLE
000904183 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904183 3367_ $$00$$2EndNote$$aJournal Article
000904183 520__ $$aCurrent climate targets require negative carbon dioxide (CO2) emissions. Direct air capture is a promising negative emission technology, but energy and material demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by life-cycle assessment that the commercial direct air capture plants in Hinwil and Hellisheiði operated by Climeworks can already achieve negative emissions today, with carbon capture efficiencies of 85.4% and 93.1%. The climate benefits of direct air capture, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become more important, inducing up to 45 and 15 gCO2e per kilogram CO2 captured, respectively. Large-scale deployment of direct air capture for 1% of the global annual CO2 emissions would not be limited by material and energy availability. However, the current small-scale production of amines for the adsorbent would need to be scaled up by more than an order of magnitude. Other environmental impacts would increase by less than 0.057% when using wind power and by up to 0.30% for the global electricity mix forecasted for 2050. Energy source and efficiency are essential for direct air capture to enable both negative emissions and low-carbon fuels.
000904183 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000904183 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904183 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b1$$eCorresponding author$$ufzj
000904183 773__ $$0PERI:(DE-600)2847369-3$$a10.1038/s41560-020-00771-9$$gVol. 6, no. 2, p. 203 - 213$$n2$$p203 - 213$$tNature energy$$v6$$x2058-7546$$y2021
000904183 8564_ $$uhttps://juser.fz-juelich.de/record/904183/files/Life%20cycle%20assessment%20of%20an%20industrial%20direct%20air%20capture%20process%20based%20on%20temperature-vacuum%20swing%20adsorption.pdf$$yPublished on 2021-02-04. Available in OpenAccess from 2021-08-04.
000904183 8564_ $$uhttps://juser.fz-juelich.de/record/904183/files/s41560-020-00771-9.pdf$$yRestricted
000904183 909CO $$ooai:juser.fz-juelich.de:904183$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904183 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000904183 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b1$$kRWTH
000904183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b1$$kFZJ
000904183 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b1
000904183 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000904183 9141_ $$y2021
000904183 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904183 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ENERGY : 2019$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNAT ENERGY : 2019$$d2021-02-04
000904183 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904183 920__ $$lyes
000904183 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000904183 9801_ $$aFullTexts
000904183 980__ $$ajournal
000904183 980__ $$aVDB
000904183 980__ $$aUNRESTRICTED
000904183 980__ $$aI:(DE-Juel1)IEK-10-20170217
000904183 981__ $$aI:(DE-Juel1)ICE-1-20170217