Journal Article FZJ-2021-05753

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption

 ;

2021
Nature Publishing Group London

Nature energy 6(2), 203 - 213 () [10.1038/s41560-020-00771-9]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Current climate targets require negative carbon dioxide (CO2) emissions. Direct air capture is a promising negative emission technology, but energy and material demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by life-cycle assessment that the commercial direct air capture plants in Hinwil and Hellisheiði operated by Climeworks can already achieve negative emissions today, with carbon capture efficiencies of 85.4% and 93.1%. The climate benefits of direct air capture, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become more important, inducing up to 45 and 15 gCO2e per kilogram CO2 captured, respectively. Large-scale deployment of direct air capture for 1% of the global annual CO2 emissions would not be limited by material and energy availability. However, the current small-scale production of amines for the adsorbent would need to be scaled up by more than an order of magnitude. Other environmental impacts would increase by less than 0.057% when using wind power and by up to 0.30% for the global electricity mix forecasted for 2050. Energy source and efficiency are essential for direct air capture to enable both negative emissions and low-carbon fuels.

Classification:

Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)

Appears in the scientific report 2021
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Essential Science Indicators ; IF >= 40 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-1
Workflow collections > Public records
IEK > IEK-10
Publications database
Open Access

 Record created 2021-12-26, last modified 2024-07-12


Published on 2021-02-04. Available in OpenAccess from 2021-08-04.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)