Home > Publications database > Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption > print |
001 | 904183 | ||
005 | 20240712112913.0 | ||
024 | 7 | _ | |a 10.1038/s41560-020-00771-9 |2 doi |
024 | 7 | _ | |a 2128/30565 |2 Handle |
024 | 7 | _ | |a altmetric:99411051 |2 altmetric |
024 | 7 | _ | |a WOS:000614670900001 |2 WOS |
037 | _ | _ | |a FZJ-2021-05753 |
082 | _ | _ | |a 330 |
100 | 1 | _ | |a Deutz, Sarah |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption |
260 | _ | _ | |a London |c 2021 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1643190774_8201 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Current climate targets require negative carbon dioxide (CO2) emissions. Direct air capture is a promising negative emission technology, but energy and material demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by life-cycle assessment that the commercial direct air capture plants in Hinwil and Hellisheiði operated by Climeworks can already achieve negative emissions today, with carbon capture efficiencies of 85.4% and 93.1%. The climate benefits of direct air capture, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become more important, inducing up to 45 and 15 gCO2e per kilogram CO2 captured, respectively. Large-scale deployment of direct air capture for 1% of the global annual CO2 emissions would not be limited by material and energy availability. However, the current small-scale production of amines for the adsorbent would need to be scaled up by more than an order of magnitude. Other environmental impacts would increase by less than 0.057% when using wind power and by up to 0.30% for the global electricity mix forecasted for 2050. Energy source and efficiency are essential for direct air capture to enable both negative emissions and low-carbon fuels. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 1 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1038/s41560-020-00771-9 |g Vol. 6, no. 2, p. 203 - 213 |0 PERI:(DE-600)2847369-3 |n 2 |p 203 - 213 |t Nature energy |v 6 |y 2021 |x 2058-7546 |
856 | 4 | _ | |y Published on 2021-02-04. Available in OpenAccess from 2021-08-04. |u https://juser.fz-juelich.de/record/904183/files/Life%20cycle%20assessment%20of%20an%20industrial%20direct%20air%20capture%20process%20based%20on%20temperature-vacuum%20swing%20adsorption.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/904183/files/s41560-020-00771-9.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:904183 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a ETH Zurich |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)172023 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-02-04 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT ENERGY : 2019 |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a IF >= 40 |0 StatID:(DE-HGF)9940 |2 StatID |b NAT ENERGY : 2019 |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|