Home > Publications database > Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure > print |
001 | 904240 | ||
005 | 20240712113107.0 | ||
024 | 7 | _ | |a 10.1038/s41560-020-00748-8 |2 doi |
024 | 7 | _ | |a 2128/29945 |2 Handle |
024 | 7 | _ | |a altmetric:98976827 |2 altmetric |
024 | 7 | _ | |a WOS:000612565600001 |2 WOS |
037 | _ | _ | |a FZJ-2021-05810 |
082 | _ | _ | |a 330 |
100 | 1 | _ | |a Duffner, Fabian |0 0000-0002-0113-0881 |b 0 |e Corresponding author |
245 | _ | _ | |a Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure |
260 | _ | _ | |a London |c 2021 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1641468716_19703 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Lithium-ion batteries are currently the most advanced electrochemical energy storage technology due to a favourable balance of performance and cost properties. Driven by forecasted growth of the electric vehicles market, the cell production capacity for this technology is continuously being scaled up. However, the demand for better performance, particularly higher energy densities and/or lower costs, has triggered research into post-lithium-ion technologies such as solid-state lithium metal, lithium–sulfur and lithium–air batteries as well as post-lithium technologies such as sodium-ion batteries. Currently, these technologies are being intensively studied with regard to material chemistry and cell design. In this Review, we expand on the current knowledge in this field. Starting with a market outlook and an analysis of technological differences, we discuss the manufacturing processes of these technologies. For each technology, we describe anode production, cathode production, cell assembly and conditioning. We then evaluate the manufacturing compatibility of each technology with the lithium-ion production infrastructure and discuss the implications for processing costs. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kronemeyer, Niklas |0 0000-0003-0996-5522 |b 1 |
700 | 1 | _ | |a Tübke, Jens |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Leker, Jens |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 4 |u fzj |
700 | 1 | _ | |a Schmuch, Richard |0 0000-0002-5670-0327 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41560-020-00748-8 |g Vol. 6, no. 2, p. 123 - 134 |0 PERI:(DE-600)2847369-3 |n 2 |p 123 - 134 |t Nature energy |v 6 |y 2021 |x 2058-7546 |
856 | 4 | _ | |y Published on 2021-01-28. Available in OpenAccess from 2021-07-28. |u https://juser.fz-juelich.de/record/904240/files/2021_Post-lithium.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/904240/files/s41560-020-00748-8.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:904240 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)166130 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-02-04 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT ENERGY : 2019 |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a IF >= 40 |0 StatID:(DE-HGF)9940 |2 StatID |b NAT ENERGY : 2019 |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|