000904554 001__ 904554 000904554 005__ 20240625095031.0 000904554 0247_ $$2doi$$a10.1088/1367-2630/abd3c5 000904554 0247_ $$2Handle$$a2128/30000 000904554 0247_ $$2altmetric$$aaltmetric:92775582 000904554 0247_ $$2WOS$$aWOS:000608871200001 000904554 037__ $$aFZJ-2021-06124 000904554 082__ $$a530 000904554 1001_ $$0P:(DE-Juel1)168366$$aRiwar, Roman-Pascal$$b0$$eCorresponding author 000904554 245__ $$aTransport fluctuation relations in interacting quantum pumps 000904554 260__ $$a[London]$$bIOP$$c2021 000904554 3367_ $$2DRIVER$$aarticle 000904554 3367_ $$2DataCite$$aOutput Types/Journal article 000904554 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641567814_12141 000904554 3367_ $$2BibTeX$$aARTICLE 000904554 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000904554 3367_ $$00$$2EndNote$$aJournal Article 000904554 520__ $$aThe understanding of out-of-equilibrium fluctuation relations in small open quantum systems has been a focal point of research in recent years. In particular, for systems with adiabatic time-dependent driving, it was shown that the fluctuation relations known from stationary systems do no longer apply due the geometric nature of the pumping current response. However, the precise physical interpretation of the corrected pumping fluctuation relations as well as the role of many-body interactions remained unexplored. Here, we study quantum systems with many-body interactions subject to slow time-dependent driving, and show that fluctuation relations of the charge current can in general not be formulated without taking into account the total energy current put into the system through the pumping process. Moreover, we show that this correction due to the input energy is nonzero only when Coulomb-interactions are present. Thus, fluctuation response relations offer an until now unrevealed opportunity to probe many-body correlations in quantum systems. We demonstrate our general findings at the concrete example of a single-level quantum dot model, and propose a scheme to measure the interaction-induced discrepancies from the stationary case. 000904554 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000904554 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000904554 7001_ $$00000-0003-1078-9490$$aSplettstoesser, Janine$$b1 000904554 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/abd3c5$$gVol. 23, no. 1, p. 013010 -$$n1$$p013010 -$$tNew journal of physics$$v23$$x1367-2630$$y2021 000904554 8564_ $$uhttps://juser.fz-juelich.de/record/904554/files/Riwar_2021_New_J._Phys._23_013010.pdf$$yOpenAccess 000904554 909CO $$ooai:juser.fz-juelich.de:904554$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000904554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b0$$kFZJ 000904554 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000904554 9141_ $$y2021 000904554 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000904554 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000904554 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2019$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000904554 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000904554 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger 000904554 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000904554 920__ $$lyes 000904554 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000904554 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1 000904554 980__ $$ajournal 000904554 980__ $$aVDB 000904554 980__ $$aUNRESTRICTED 000904554 980__ $$aI:(DE-Juel1)PGI-2-20110106 000904554 980__ $$aI:(DE-Juel1)IAS-3-20090406 000904554 9801_ $$aFullTexts