000904597 001__ 904597
000904597 005__ 20220131120431.0
000904597 0247_ $$2doi$$a10.1063/5.0035300
000904597 0247_ $$2ISSN$$a0003-6951
000904597 0247_ $$2ISSN$$a1077-3118
000904597 0247_ $$2ISSN$$a1520-8842
000904597 0247_ $$2Handle$$a2128/30073
000904597 0247_ $$2altmetric$$aaltmetric:93249936
000904597 0247_ $$2WOS$$aWOS:000630486600001
000904597 037__ $$aFZJ-2021-06167
000904597 082__ $$a530
000904597 1001_ $$0P:(DE-HGF)0$$aBanszerus, L.$$b0$$eCorresponding author
000904597 245__ $$aTunable interdot coupling in few-electron bilayer graphene double quantum dots
000904597 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2021
000904597 3367_ $$2DRIVER$$aarticle
000904597 3367_ $$2DataCite$$aOutput Types/Journal article
000904597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641900876_22042
000904597 3367_ $$2BibTeX$$aARTICLE
000904597 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904597 3367_ $$00$$2EndNote$$aJournal Article
000904597 520__ $$aWe present a highly controllable double quantum dot device based on bilayer graphene. Using a device architecture of interdigitated gate fingers, we can control the interdot tunnel coupling between 1 and 4 GHz and the mutual capacitive coupling between 0.2 and 0.6 meV, independent of the charge occupation of the quantum dots. The charging energy and, hence, the dot size remain nearly unchanged. The tuning range of the tunnel coupling covers the operating regime of typical silicon and GaAs spin qubit devices.
000904597 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000904597 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904597 7001_ $$0P:(DE-HGF)0$$aRothstein, A.$$b1
000904597 7001_ $$0P:(DE-Juel1)177707$$aIcking, E.$$b2
000904597 7001_ $$0P:(DE-HGF)0$$aMöller, S.$$b3
000904597 7001_ $$0P:(DE-HGF)0$$aWatanabe, K.$$b4
000904597 7001_ $$0P:(DE-HGF)0$$aTaniguchi, T.$$b5
000904597 7001_ $$0P:(DE-Juel1)180322$$aStampfer, C.$$b6
000904597 7001_ $$0P:(DE-Juel1)187247$$aVolk, Christian$$b7
000904597 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/5.0035300$$gVol. 118, no. 10, p. 103101 -$$n10$$p103101 -$$tApplied physics letters$$v118$$x0003-6951$$y2021
000904597 8564_ $$uhttps://juser.fz-juelich.de/record/904597/files/5.0035300.pdf$$yPublished on 2021-03-08. Available in OpenAccess from 2022-03-08.
000904597 909CO $$ooai:juser.fz-juelich.de:904597$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904597 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000904597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177707$$aForschungszentrum Jülich$$b2$$kFZJ
000904597 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000904597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b6$$kFZJ
000904597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187247$$aForschungszentrum Jülich$$b7$$kFZJ
000904597 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000904597 9141_ $$y2021
000904597 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904597 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2019$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000904597 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-28
000904597 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000904597 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904597 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000904597 9801_ $$aFullTexts
000904597 980__ $$ajournal
000904597 980__ $$aVDB
000904597 980__ $$aUNRESTRICTED
000904597 980__ $$aI:(DE-Juel1)PGI-9-20110106