000904647 001__ 904647
000904647 005__ 20220220014000.0
000904647 0247_ $$2arXiv$$aarXiv:2012.06234
000904647 0247_ $$2Handle$$a2128/30734
000904647 0247_ $$2altmetric$$aaltmetric:95935519
000904647 037__ $$aFZJ-2021-06216
000904647 1001_ $$0P:(DE-HGF)0$$aGherardini, Stefano$$b0$$eCorresponding author
000904647 245__ $$aInformation flow and error scaling for fully-quantum control
000904647 260__ $$c2020
000904647 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1645167398_339
000904647 3367_ $$2ORCID$$aWORKING_PAPER
000904647 3367_ $$028$$2EndNote$$aElectronic Article
000904647 3367_ $$2DRIVER$$apreprint
000904647 3367_ $$2BibTeX$$aARTICLE
000904647 3367_ $$2DataCite$$aOutput Types/Working Paper
000904647 500__ $$a9 pages, 4 figures
000904647 520__ $$aThe optimally designed control of quantum systems is playing an increasingly important role to engineer novel and more efficient quantum technologies. Here, in the scenario represented by controlling an arbitrary quantum system via the interaction with an another optimally initialized auxiliary quantum system, we show that the quantum channel capacity sets the scaling behaviour of the optimal control error. Specifically, we prove that the minimum control error is ensured by maximizing the quantum capacity of the channel mapping the initial control state into the target state of the controlled system, i.e., optimizing the quantum information flow from the controller to the system to be controlled. Analytical results, supported by numerical evidences, are provided when the systems and the controller are either qubits or single Bosonic modes and can be applied to a very large class of platforms for controllable quantum devices.
000904647 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000904647 588__ $$aDataset connected to arXivarXiv
000904647 7001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias$$b1$$ufzj
000904647 7001_ $$0P:(DE-Juel1)187073$$aMontangero, Simone$$b2
000904647 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b3$$ufzj
000904647 7001_ $$0P:(DE-HGF)0$$aCaruso, Filippo$$b4
000904647 8564_ $$uhttps://juser.fz-juelich.de/record/904647/files/2012.06234.pdf$$yOpenAccess
000904647 909CO $$ooai:juser.fz-juelich.de:904647$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b1$$kFZJ
000904647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b3$$kFZJ
000904647 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000904647 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904647 915__ $$0LIC:(DE-HGF)CCBYSA4$$2HGFVOC$$aCreative Commons Attribution-ShareAlike CC BY-SA 4.0
000904647 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000904647 9801_ $$aFullTexts
000904647 980__ $$apreprint
000904647 980__ $$aVDB
000904647 980__ $$aUNRESTRICTED
000904647 980__ $$aI:(DE-Juel1)PGI-8-20190808