000904647 001__ 904647 000904647 005__ 20220220014000.0 000904647 0247_ $$2arXiv$$aarXiv:2012.06234 000904647 0247_ $$2Handle$$a2128/30734 000904647 0247_ $$2altmetric$$aaltmetric:95935519 000904647 037__ $$aFZJ-2021-06216 000904647 1001_ $$0P:(DE-HGF)0$$aGherardini, Stefano$$b0$$eCorresponding author 000904647 245__ $$aInformation flow and error scaling for fully-quantum control 000904647 260__ $$c2020 000904647 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1645167398_339 000904647 3367_ $$2ORCID$$aWORKING_PAPER 000904647 3367_ $$028$$2EndNote$$aElectronic Article 000904647 3367_ $$2DRIVER$$apreprint 000904647 3367_ $$2BibTeX$$aARTICLE 000904647 3367_ $$2DataCite$$aOutput Types/Working Paper 000904647 500__ $$a9 pages, 4 figures 000904647 520__ $$aThe optimally designed control of quantum systems is playing an increasingly important role to engineer novel and more efficient quantum technologies. Here, in the scenario represented by controlling an arbitrary quantum system via the interaction with an another optimally initialized auxiliary quantum system, we show that the quantum channel capacity sets the scaling behaviour of the optimal control error. Specifically, we prove that the minimum control error is ensured by maximizing the quantum capacity of the channel mapping the initial control state into the target state of the controlled system, i.e., optimizing the quantum information flow from the controller to the system to be controlled. Analytical results, supported by numerical evidences, are provided when the systems and the controller are either qubits or single Bosonic modes and can be applied to a very large class of platforms for controllable quantum devices. 000904647 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000904647 588__ $$aDataset connected to arXivarXiv 000904647 7001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias$$b1$$ufzj 000904647 7001_ $$0P:(DE-Juel1)187073$$aMontangero, Simone$$b2 000904647 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b3$$ufzj 000904647 7001_ $$0P:(DE-HGF)0$$aCaruso, Filippo$$b4 000904647 8564_ $$uhttps://juser.fz-juelich.de/record/904647/files/2012.06234.pdf$$yOpenAccess 000904647 909CO $$ooai:juser.fz-juelich.de:904647$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000904647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b1$$kFZJ 000904647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b3$$kFZJ 000904647 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000904647 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000904647 915__ $$0LIC:(DE-HGF)CCBYSA4$$2HGFVOC$$aCreative Commons Attribution-ShareAlike CC BY-SA 4.0 000904647 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0 000904647 9801_ $$aFullTexts 000904647 980__ $$apreprint 000904647 980__ $$aVDB 000904647 980__ $$aUNRESTRICTED 000904647 980__ $$aI:(DE-Juel1)PGI-8-20190808