000904677 001__ 904677
000904677 005__ 20230123101914.0
000904677 0247_ $$2doi$$a10.1515/psr-2019-0112
000904677 0247_ $$2Handle$$a2128/30781
000904677 0247_ $$2WOS$$aWOS:000868784100003
000904677 037__ $$aFZJ-2022-00026
000904677 082__ $$a530
000904677 1001_ $$0P:(DE-HGF)0$$aLiebl, Maik$$b0$$eCorresponding author
000904677 245__ $$aMagnetic measurement methods to probe nanoparticle–matrix interactions
000904677 260__ $$aBerlin$$bde Gruyter$$c2021
000904677 3367_ $$2DRIVER$$aarticle
000904677 3367_ $$2DataCite$$aOutput Types/Journal article
000904677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645693244_20244
000904677 3367_ $$2BibTeX$$aARTICLE
000904677 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904677 3367_ $$00$$2EndNote$$aJournal Article
000904677 520__ $$aMagnetic nanoparticles (MNPs) are key elements in several biomedicalapplications, e.g., in cancer therapy. Here, the MNPs are remotely manipulated bymagnetic fields from outside the body to deliver drugs or generate heat in tumor tissue.The efficiency and success of these approaches strongly depend on the spatial distri-bution and quantity of MNPs inside a body and interactions of the particles with thebiological matrix. These include dynamic processes of the MNPs in the organism suchas binding kinetics, cellular uptake, passage through cell barriers, heat induction andflow. While magnetic measurement methods have been applied so far to resolve thelocation and quantity of MNPs for therapy monitoring, these methods can be advancedto additionally access these particle–matrix interactions. By this, the MNPs can furtherbe utilized as probes for the physical properties of their molecular environment. In thisreview, we first investigate the impact of nanoparticle–matrix interactions on magneticmeasurements in selected experiments. With these results, we then advanced theimaging modalities magnetorelaxometry imaging and magnetic microsphere trackingto spatially resolve particle–matrix interactions.
000904677 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000904677 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000904677 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904677 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000904677 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000904677 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000904677 7001_ $$0P:(DE-HGF)0$$aEberbeck, Dietmar$$b1
000904677 7001_ $$0P:(DE-HGF)0$$aCoene, Annelies$$b2
000904677 7001_ $$0P:(DE-HGF)0$$aLeliaert, Jonathan$$b3
000904677 7001_ $$0P:(DE-HGF)0$$aJauch, Philine$$b4
000904677 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b5$$ufzj
000904677 7001_ $$0P:(DE-Juel1)169361$$aFruhner, Lisa$$b6$$ufzj
000904677 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, Lester$$b7
000904677 7001_ $$0P:(DE-HGF)0$$aMayr, Stefan G.$$b8
000904677 7001_ $$0P:(DE-HGF)0$$aWiekhorst, Frank$$b9
000904677 773__ $$0PERI:(DE-600)2864634-4$$a10.1515/psr-2019-0112$$gVol. 0, no. 0, p. 20190112$$n0$$p20190112$$tPhysical sciences reviews$$v0$$x2365-659X$$y2021
000904677 8564_ $$uhttps://juser.fz-juelich.de/record/904677/files/Manuscript.pdf$$yOpenAccess
000904677 909CO $$ooai:juser.fz-juelich.de:904677$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000904677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b5$$kFZJ
000904677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169361$$aForschungszentrum Jülich$$b6$$kFZJ
000904677 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000904677 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000904677 9141_ $$y2022
000904677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000904677 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904677 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-29
000904677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000904677 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000904677 920__ $$lno
000904677 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000904677 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000904677 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
000904677 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000904677 980__ $$ajournal
000904677 980__ $$aVDB
000904677 980__ $$aUNRESTRICTED
000904677 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000904677 980__ $$aI:(DE-588b)4597118-3
000904677 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000904677 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000904677 9801_ $$aFullTexts