001     904677
005     20230123101914.0
024 7 _ |a 10.1515/psr-2019-0112
|2 doi
024 7 _ |a 2128/30781
|2 Handle
024 7 _ |a WOS:000868784100003
|2 WOS
037 _ _ |a FZJ-2022-00026
082 _ _ |a 530
100 1 _ |a Liebl, Maik
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Magnetic measurement methods to probe nanoparticle–matrix interactions
260 _ _ |a Berlin
|c 2021
|b de Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645693244_20244
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic nanoparticles (MNPs) are key elements in several biomedicalapplications, e.g., in cancer therapy. Here, the MNPs are remotely manipulated bymagnetic fields from outside the body to deliver drugs or generate heat in tumor tissue.The efficiency and success of these approaches strongly depend on the spatial distri-bution and quantity of MNPs inside a body and interactions of the particles with thebiological matrix. These include dynamic processes of the MNPs in the organism suchas binding kinetics, cellular uptake, passage through cell barriers, heat induction andflow. While magnetic measurement methods have been applied so far to resolve thelocation and quantity of MNPs for therapy monitoring, these methods can be advancedto additionally access these particle–matrix interactions. By this, the MNPs can furtherbe utilized as probes for the physical properties of their molecular environment. In thisreview, we first investigate the impact of nanoparticle–matrix interactions on magneticmeasurements in selected experiments. With these results, we then advanced theimaging modalities magnetorelaxometry imaging and magnetic microsphere trackingto spatially resolve particle–matrix interactions.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Eberbeck, Dietmar
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Coene, Annelies
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Leliaert, Jonathan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jauch, Philine
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kruteva, Margarita
|0 P:(DE-Juel1)130777
|b 5
|u fzj
700 1 _ |a Fruhner, Lisa
|0 P:(DE-Juel1)169361
|b 6
|u fzj
700 1 _ |a Barnsley, Lester
|0 P:(DE-Juel1)172014
|b 7
700 1 _ |a Mayr, Stefan G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wiekhorst, Frank
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1515/psr-2019-0112
|g Vol. 0, no. 0, p. 20190112
|0 PERI:(DE-600)2864634-4
|n 0
|p 20190112
|t Physical sciences reviews
|v 0
|y 2021
|x 2365-659X
856 4 _ |u https://juser.fz-juelich.de/record/904677/files/Manuscript.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904677
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)169361
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21