000904678 001__ 904678
000904678 005__ 20240619091932.0
000904678 0247_ $$2doi$$a10.1122/8.0000206
000904678 0247_ $$2ISSN$$a0148-6055
000904678 0247_ $$2ISSN$$a1520-8516
000904678 0247_ $$2datacite_doi$$a10.34734/FZJ-2022-00027
000904678 0247_ $$2WOS$$aWOS:000756000100003
000904678 037__ $$aFZJ-2022-00027
000904678 041__ $$aEnglish
000904678 082__ $$a530
000904678 1001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b0$$eCorresponding author$$ufzj
000904678 245__ $$aStructure and dynamics of large ring polymers
000904678 260__ $$aMelville, NY [u.a.]$$bInst.$$c2021
000904678 3367_ $$2DRIVER$$aarticle
000904678 3367_ $$2DataCite$$aOutput Types/Journal article
000904678 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711014745_23964
000904678 3367_ $$2BibTeX$$aARTICLE
000904678 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904678 3367_ $$00$$2EndNote$$aJournal Article
000904678 520__ $$aA comprehensive study on the molecular conformation and dynamics of very large polyethylene-oxide (PEO) rings in the melt is reported. For all rings, independent of ring size, by SANS we observe a cross over, from a strong Q-dependence at intermediate Q to a Q^(-2) dependence at higher Q. Constructing a generic model including a cross over from Gaussian statistics at short distances to more compact structures at larger distances, we find the cross over at a distance along the ring of N_(e,0)=45±2.5 monomers close to the entanglement distance in the linear counterpart. This finding is clear evidence for the predicted elementary loops building the ring conformation. The radius of gyration R_g (N) follows quantitatively the result of numerous simulations. However, other than claimed, the cross over to mass fractal statistics does occur around N≅10N_(e,0), but up to N≅4N_(e,0)  the relation  R_g (N)  ~ N^0.39 holds. The self-similar ring dynamics was accessed by PFG-NMR and NSE: We find three dynamic regimes for center of mass diffusion starting (i) with a strongly sub-diffusive domain 〈r_com^2 (t)〉  ~ t^α (0.4≤α≤0.65) (ii) a second sub-diffusive region 〈r_com^2 (t)〉  ~ t^0.75 that (iii) finally crosses over to Fickian diffusion. The internal dynamics at scales below the elementary loop size is well described by ring Rouse motion. At larger scales the dynamics is self-similar and follows very well the predictions of scaling models with preference for the fractal loopy globule (FLG) model.
000904678 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000904678 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x1
000904678 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
000904678 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x3
000904678 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904678 7001_ $$0P:(DE-HGF)0$$aAllgaier, Jürgen$$b1
000904678 7001_ $$0P:(DE-Juel1)130849$$aMonkenbusch, Michael$$b2
000904678 7001_ $$0P:(DE-HGF)0$$aHoffmann, Ingo$$b3
000904678 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b4
000904678 773__ $$0PERI:(DE-600)1461060-7$$a10.1122/8.0000206$$gVol. 65, no. 4, p. 713 - 727$$n4$$p713 - 727$$tJournal of rheology$$v65$$x0148-6055$$y2021
000904678 8564_ $$uhttps://juser.fz-juelich.de/record/904678/files/713_1_online.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000904678 8564_ $$uhttps://juser.fz-juelich.de/record/904678/files/Accepted%20Manuscript.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000904678 8564_ $$uhttps://juser.fz-juelich.de/record/904678/files/713_1_online.gif?subformat=icon$$xicon$$yRestricted$$zStatID:(DE-HGF)0599
000904678 8564_ $$uhttps://juser.fz-juelich.de/record/904678/files/713_1_online.jpg?subformat=icon-1440$$xicon-1440$$yRestricted$$zStatID:(DE-HGF)0599
000904678 8564_ $$uhttps://juser.fz-juelich.de/record/904678/files/713_1_online.jpg?subformat=icon-180$$xicon-180$$yRestricted$$zStatID:(DE-HGF)0599
000904678 8564_ $$uhttps://juser.fz-juelich.de/record/904678/files/713_1_online.jpg?subformat=icon-640$$xicon-640$$yRestricted$$zStatID:(DE-HGF)0599
000904678 8767_ $$d2022-09-21$$eHybrid-OA$$jPublish and Read
000904678 909CO $$ooai:juser.fz-juelich.de:904678$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000904678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b0$$kFZJ
000904678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000904678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130849$$aForschungszentrum Jülich$$b2$$kFZJ
000904678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b4$$kFZJ
000904678 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000904678 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x1
000904678 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x2
000904678 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x3
000904678 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904678 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904678 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904678 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ RHEOL : 2019$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000904678 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904678 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904678 920__ $$lno
000904678 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000904678 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
000904678 9801_ $$aAPC
000904678 9801_ $$aFullTexts
000904678 980__ $$ajournal
000904678 980__ $$aVDB
000904678 980__ $$aUNRESTRICTED
000904678 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000904678 980__ $$aI:(DE-Juel1)IBI-8-20200312
000904678 980__ $$aAPC
000904678 981__ $$aI:(DE-Juel1)JCNS-1-20110106