000904792 001__ 904792
000904792 005__ 20230123110548.0
000904792 0247_ $$2doi$$a10.1063/5.0070412
000904792 0247_ $$2ISSN$$a0021-9606
000904792 0247_ $$2ISSN$$a1089-7690
000904792 0247_ $$2ISSN$$a1520-9032
000904792 0247_ $$2Handle$$a2128/29913
000904792 0247_ $$2altmetric$$aaltmetric:120479207
000904792 0247_ $$2pmid$$a34998327
000904792 0247_ $$2WOS$$aWOS:000739267900004
000904792 037__ $$aFZJ-2022-00122
000904792 041__ $$aEnglish
000904792 082__ $$a530
000904792 1001_ $$00000-0002-0354-8130$$aNilsson, Daniel$$b0
000904792 245__ $$aLimitations of field-theory simulation for exploring phase separation: The role of repulsion in a lattice protein model
000904792 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2022
000904792 3367_ $$2DRIVER$$aarticle
000904792 3367_ $$2DataCite$$aOutput Types/Journal article
000904792 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641393579_10771
000904792 3367_ $$2BibTeX$$aARTICLE
000904792 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904792 3367_ $$00$$2EndNote$$aJournal Article
000904792 520__ $$aField-theory simulation by the complex Langevin method offers an alternative to conventional sampling techniques for exploring the forces driving biomolecular liquid-liquid phase separation. Such simulations have recently been used to study several polyampholyte systems. Here, we formulate a field theory corresponding to the hydrophobic/polar HP lattice protein model, with finite same-site repulsion and nearest-neighbor attraction between HH bead pairs. By direct comparison with particle-based Monte Carlo simulations, we show that complex Langevin sampling of the field theory reproduces the thermodynamic properties of the HP model only if the same-site repulsion is not too strong. Unfortunately, the repulsion has to be taken weaker than what is needed to prevent condensed droplets from assuming an artificially compact shape. Analysis of a minimal and analytically solvable toy model hints that the sampling problems caused by repulsive interaction may stem from a loss of ergodicity.
000904792 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904792 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904792 7001_ $$00000-0003-1533-1390$$aBozorg, Behruz$$b1
000904792 7001_ $$0P:(DE-Juel1)132590$$aMohanty, Sandipan$$b2
000904792 7001_ $$00000-0002-6798-9779$$aSöderberg, Bo$$b3
000904792 7001_ $$00000-0003-1384-0626$$aIrbäck, Anders$$b4$$eCorresponding author
000904792 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0070412$$gVol. 156, no. 1, p. 015101 -$$n1$$p015101 -$$tThe journal of chemical physics$$v156$$x0021-9606$$y2022
000904792 8564_ $$uhttps://juser.fz-juelich.de/record/904792/files/5.0070412.pdf$$yOpenAccess
000904792 909CO $$ooai:juser.fz-juelich.de:904792$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132590$$aForschungszentrum Jülich$$b2$$kFZJ
000904792 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904792 9141_ $$y2022
000904792 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904792 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904792 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904792 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904792 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-25$$wger
000904792 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2021$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000904792 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000904792 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000904792 980__ $$ajournal
000904792 980__ $$aVDB
000904792 980__ $$aUNRESTRICTED
000904792 980__ $$aI:(DE-Juel1)JSC-20090406
000904792 9801_ $$aFullTexts