000904877 001__ 904877
000904877 005__ 20240712113124.0
000904877 0247_ $$2doi$$a10.1002/admi.202102078
000904877 0247_ $$2altmetric$$aaltmetric:121200784
000904877 0247_ $$2WOS$$aWOS:000737073400001
000904877 0247_ $$2Handle$$a2128/31293
000904877 037__ $$aFZJ-2022-00193
000904877 082__ $$a600
000904877 1001_ $$0P:(DE-Juel1)179440$$aKühn, Sebastian P.$$b0$$ufzj
000904877 245__ $$aFace to Face at the Cathode Electrolyte Interphase: From Interface Features to Interphase Formation and Dynamics
000904877 260__ $$aWeinheim$$bWiley-VCH$$c2022
000904877 3367_ $$2DRIVER$$aarticle
000904877 3367_ $$2DataCite$$aOutput Types/Journal article
000904877 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652967063_5303
000904877 3367_ $$2BibTeX$$aARTICLE
000904877 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904877 3367_ $$00$$2EndNote$$aJournal Article
000904877 520__ $$aDevelopment of high-performing lithium-based batteries inevitably calls for a profound understanding and elucidation of the reactivity at the electrode–liquid electrolyte interface and its impact on the overall performance and safety. The formation, composition, properties, and mechanisms of the cathode electrolyte interphase (CEI) formation and function are still to a large extent unknown for most lithium-based battery materials, whereas the same is well considered for the solid electrolyte interphase on negative electrodes in the literature. In particular, in high voltage regions >4.3 V, the oxidative stability limit of most liquid electrolytes is reached and new mechanisms, involving surface reactivity of the active material beside electrolyte decomposition, contribute to the interfacial reactivity and nature of the CEI. Focusing on lithium-based cell chemistries, this review aims to highlight the impact of the still less understood electrolyte decomposition chemistry, dictated by the nature of its components, as well as the in-depth research on the physicochemical and electrochemical properties of CEI formation and evolution at positive electrode material surface and sub-surfaces.
000904877 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000904877 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904877 7001_ $$0P:(DE-HGF)0$$aEdström, Kristina$$b1
000904877 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj
000904877 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b3$$eCorresponding author
000904877 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.202102078$$gp. 2102078 -$$n8$$p2102078 -$$tAdvanced materials interfaces$$v9$$x2196-7350$$y2022
000904877 8564_ $$uhttps://juser.fz-juelich.de/record/904877/files/Invoice_05702470.pdf
000904877 8564_ $$uhttps://juser.fz-juelich.de/record/904877/files/Adv%20Materials%20Inter%20-%202022%20-%20K%20hn%20-%20Face%20to%20Face%20at%20the%20Cathode%20Electrolyte%20Interphase%20From%20Interface%20Features%20to.pdf$$yOpenAccess
000904877 8767_ $$85702470$$92022-03-15$$a1200181261$$d2022-05-23$$eCover$$jZahlung erfolgt
000904877 8767_ $$d2022-11-14$$eHybrid-OA$$jDEAL
000904877 909CO $$ooai:juser.fz-juelich.de:904877$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
000904877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179440$$aForschungszentrum Jülich$$b0$$kFZJ
000904877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000904877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b3$$kFZJ
000904877 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000904877 9141_ $$y2022
000904877 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000904877 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000904877 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904877 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904877 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904877 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2021$$d2022-11-12
000904877 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000904877 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000904877 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000904877 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000904877 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000904877 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV MATER INTERFACES : 2021$$d2022-11-12
000904877 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000904877 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000904877 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000904877 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000904877 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000904877 9801_ $$aAPC
000904877 9801_ $$aFullTexts
000904877 980__ $$ajournal
000904877 980__ $$aVDB
000904877 980__ $$aUNRESTRICTED
000904877 980__ $$aI:(DE-Juel1)IEK-12-20141217
000904877 980__ $$aAPC
000904877 981__ $$aI:(DE-Juel1)IMD-4-20141217