000904946 001__ 904946
000904946 005__ 20230123101845.0
000904946 0247_ $$2doi$$a10.1021/acs.nanolett.1c00055
000904946 0247_ $$2ISSN$$a1530-6984
000904946 0247_ $$2ISSN$$a1530-6992
000904946 0247_ $$2Handle$$a2128/30672
000904946 0247_ $$2altmetric$$aaltmetric:104006549
000904946 0247_ $$2pmid$$apmid:33759536
000904946 0247_ $$2WOS$$aWOS:000641160500034
000904946 037__ $$aFZJ-2022-00260
000904946 041__ $$aEnglish
000904946 082__ $$a660
000904946 1001_ $$00000-0002-7362-6499$$aWu, Ming$$b0
000904946 245__ $$aFlexoelectric Thin-Film Photodetectors
000904946 260__ $$aWashington, DC$$bACS Publ.$$c2021
000904946 3367_ $$2DRIVER$$aarticle
000904946 3367_ $$2DataCite$$aOutput Types/Journal article
000904946 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644587043_27781
000904946 3367_ $$2BibTeX$$aARTICLE
000904946 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904946 3367_ $$00$$2EndNote$$aJournal Article
000904946 520__ $$aThe flexoelectric effect, which manifests itself as a strain-gradient-induced electrical polarization, has triggered great interest due to its ubiquitous existence in crystalline materials without the limitation of lattice symmetry. Here, we propose a flexoelectric photodetector based on a thin-film heterostructure. This prototypical device is demonstrated by epitaxial LaFeO3 thin films grown on LaAlO3 substrates. A giant strain gradient of the order of 106/m is achieved in LaFeO3 thin films, giving rise to an obvious flexoelectric polarization and generating a significant photovoltaic effect in the LaFeO3-based heterostructures with nanosecond response under light illumination. This work not only demonstrates a novel self-powered photodetector different from the traditional interface-type structures, such as the p–n and Schottky junctions but also opens an avenue to design practical flexoelectric devices for nanoelectronics applications.
000904946 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000904946 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904946 7001_ $$0P:(DE-HGF)0$$aJiang, Zhizheng$$b1
000904946 7001_ $$0P:(DE-HGF)0$$aLou, Xiaojie$$b2$$eCorresponding author
000904946 7001_ $$0P:(DE-HGF)0$$aZhang, Fan$$b3
000904946 7001_ $$0P:(DE-Juel1)176812$$aSong, Dongsheng$$b4
000904946 7001_ $$0P:(DE-HGF)0$$aNing, Shoucong$$b5
000904946 7001_ $$0P:(DE-HGF)0$$aGuo, Mengyao$$b6
000904946 7001_ $$00000-0002-3210-6323$$aPennycook, Stephen J.$$b7$$eCorresponding author
000904946 7001_ $$0P:(DE-HGF)0$$aDai, Ji-yan$$b8$$eCorresponding author
000904946 7001_ $$00000-0001-5026-6585$$aWen, Zheng$$b9$$eCorresponding author
000904946 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.1c00055$$gVol. 21, no. 7, p. 2946 - 2952$$n7$$p2946 - 2952$$tNano letters$$v21$$x1530-6984$$y2021
000904946 8564_ $$uhttps://juser.fz-juelich.de/record/904946/files/acs.nanolett.1c00055.pdf
000904946 8564_ $$uhttps://juser.fz-juelich.de/record/904946/files/Flexoelectric%20thin-film%20photodetectors.pdf$$yPublished on 2021-03-24. Available in OpenAccess from 2022-03-24.
000904946 909CO $$ooai:juser.fz-juelich.de:904946$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904946 9101_ $$0I:(DE-HGF)0$$60000-0002-7362-6499$$aExternal Institute$$b0$$kExtern
000904946 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000904946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176812$$aForschungszentrum Jülich$$b4$$kFZJ
000904946 9101_ $$0I:(DE-HGF)0$$60000-0002-3210-6323$$aExternal Institute$$b7$$kExtern
000904946 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000904946 9141_ $$y2022
000904946 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904946 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2019$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2019$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904946 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904946 920__ $$lyes
000904946 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000904946 980__ $$ajournal
000904946 980__ $$aVDB
000904946 980__ $$aUNRESTRICTED
000904946 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000904946 9801_ $$aFullTexts