001     904946
005     20230123101845.0
024 7 _ |a 10.1021/acs.nanolett.1c00055
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/30672
|2 Handle
024 7 _ |a altmetric:104006549
|2 altmetric
024 7 _ |a pmid:33759536
|2 pmid
024 7 _ |a WOS:000641160500034
|2 WOS
037 _ _ |a FZJ-2022-00260
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Wu, Ming
|0 0000-0002-7362-6499
|b 0
245 _ _ |a Flexoelectric Thin-Film Photodetectors
260 _ _ |a Washington, DC
|c 2021
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1644587043_27781
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The flexoelectric effect, which manifests itself as a strain-gradient-induced electrical polarization, has triggered great interest due to its ubiquitous existence in crystalline materials without the limitation of lattice symmetry. Here, we propose a flexoelectric photodetector based on a thin-film heterostructure. This prototypical device is demonstrated by epitaxial LaFeO3 thin films grown on LaAlO3 substrates. A giant strain gradient of the order of 106/m is achieved in LaFeO3 thin films, giving rise to an obvious flexoelectric polarization and generating a significant photovoltaic effect in the LaFeO3-based heterostructures with nanosecond response under light illumination. This work not only demonstrates a novel self-powered photodetector different from the traditional interface-type structures, such as the p–n and Schottky junctions but also opens an avenue to design practical flexoelectric devices for nanoelectronics applications.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jiang, Zhizheng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lou, Xiaojie
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Zhang, Fan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Song, Dongsheng
|0 P:(DE-Juel1)176812
|b 4
700 1 _ |a Ning, Shoucong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Guo, Mengyao
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pennycook, Stephen J.
|0 0000-0002-3210-6323
|b 7
|e Corresponding author
700 1 _ |a Dai, Ji-yan
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Wen, Zheng
|0 0000-0001-5026-6585
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.1c00055
|g Vol. 21, no. 7, p. 2946 - 2952
|0 PERI:(DE-600)2048866-X
|n 7
|p 2946 - 2952
|t Nano letters
|v 21
|y 2021
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/904946/files/acs.nanolett.1c00055.pdf
856 4 _ |y Published on 2021-03-24. Available in OpenAccess from 2022-03-24.
|u https://juser.fz-juelich.de/record/904946/files/Flexoelectric%20thin-film%20photodetectors.pdf
909 C O |o oai:juser.fz-juelich.de:904946
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-7362-6499
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176812
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0002-3210-6323
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21