000905088 001__ 905088
000905088 005__ 20240313103134.0
000905088 0247_ $$2doi$$a10.1101/2021.12.14.472584
000905088 0247_ $$2Handle$$a2128/30123
000905088 0247_ $$2altmetric$$aaltmetric:119111922
000905088 037__ $$aFZJ-2022-00387
000905088 1001_ $$0P:(DE-Juel1)174497$$aLayer, Moritz$$b0$$eCorresponding author
000905088 245__ $$aA mean-field toolbox for spiking neuronal network model analysis
000905088 260__ $$c2021
000905088 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1641972837_25186
000905088 3367_ $$2ORCID$$aWORKING_PAPER
000905088 3367_ $$028$$2EndNote$$aElectronic Article
000905088 3367_ $$2DRIVER$$apreprint
000905088 3367_ $$2BibTeX$$aARTICLE
000905088 3367_ $$2DataCite$$aOutput Types/Working Paper
000905088 520__ $$aMean-field theory of spiking neuronal networks has led to numerous advances in our analytical and intuitive understanding of the dynamics of neuronal network models during the past decades. But, the elaborate nature of many of the developed methods, as well as the difficulty of implementing them, may limit the wider neuroscientific community from taking maximal advantage of these tools. In order to make them more accessible, we implemented an extensible, easy-to-use open-source Python toolbox that collects a variety of mean-field methods for the widely used leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox (NNMT) in its current state allows for estimating properties of large neuronal networks, such as firing rates, power spectra, and dynamical stability in mean-field and linear response approximation, without running simulations on high performance systems. In this article we describe how the toolbox is implemented, show how it is used to calculate neuronal network properties, and discuss different use-cases, such as extraction of network mechanisms, parameter space exploration, or hybrid modeling approaches. Although the initial version of the toolbox focuses on methods that are close to our own past and present research, its structure is designed to be open and extensible. It aims to provide a platform for collecting analytical methods for neuronal network model analysis and we discuss how interested scientists can share their own methods via this platform.
000905088 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000905088 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000905088 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000905088 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000905088 536__ $$0G:(GEPRIS)368482240$$aGRK 2416: MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)$$c368482240$$x4
000905088 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
000905088 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x6
000905088 588__ $$aDataset connected to CrossRef
000905088 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b1
000905088 7001_ $$0P:(DE-Juel1)176777$$aEssink, Simon$$b2
000905088 7001_ $$0P:(DE-Juel1)173607$$avan Meegen, Alexander$$b3
000905088 7001_ $$0P:(DE-HGF)0$$aBos, Hannah$$b4
000905088 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b5
000905088 773__ $$a10.1101/2021.12.14.472584
000905088 8564_ $$uhttps://juser.fz-juelich.de/record/905088/files/2021.12.14.472584v1.full.pdf$$yOpenAccess
000905088 909CO $$ooai:juser.fz-juelich.de:905088$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000905088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174497$$aForschungszentrum Jülich$$b0$$kFZJ
000905088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b1$$kFZJ
000905088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176777$$aForschungszentrum Jülich$$b2$$kFZJ
000905088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173607$$aForschungszentrum Jülich$$b3$$kFZJ
000905088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b5$$kFZJ
000905088 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000905088 9141_ $$y2021
000905088 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905088 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905088 920__ $$lno
000905088 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000905088 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000905088 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000905088 9801_ $$aFullTexts
000905088 980__ $$apreprint
000905088 980__ $$aVDB
000905088 980__ $$aUNRESTRICTED
000905088 980__ $$aI:(DE-Juel1)INM-6-20090406
000905088 980__ $$aI:(DE-Juel1)IAS-6-20130828
000905088 980__ $$aI:(DE-Juel1)INM-10-20170113
000905088 981__ $$aI:(DE-Juel1)IAS-6-20130828