Preprint FZJ-2022-00387

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A mean-field toolbox for spiking neuronal network model analysis

 ;  ;  ;  ;  ;

2021

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Mean-field theory of spiking neuronal networks has led to numerous advances in our analytical and intuitive understanding of the dynamics of neuronal network models during the past decades. But, the elaborate nature of many of the developed methods, as well as the difficulty of implementing them, may limit the wider neuroscientific community from taking maximal advantage of these tools. In order to make them more accessible, we implemented an extensible, easy-to-use open-source Python toolbox that collects a variety of mean-field methods for the widely used leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox (NNMT) in its current state allows for estimating properties of large neuronal networks, such as firing rates, power spectra, and dynamical stability in mean-field and linear response approximation, without running simulations on high performance systems. In this article we describe how the toolbox is implemented, show how it is used to calculate neuronal network properties, and discuss different use-cases, such as extraction of network mechanisms, parameter space exploration, or hybrid modeling approaches. Although the initial version of the toolbox focuses on methods that are close to our own past and present research, its structure is designed to be open and extensible. It aims to provide a platform for collecting analytical methods for neuronal network model analysis and we discuss how interested scientists can share their own methods via this platform.


Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 5231 - Neuroscientific Foundations (POF4-523) (POF4-523)
  2. HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) (720270)
  3. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)
  4. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  5. GRK 2416:  MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240) (368482240)
  6. JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) (JL SMHB-2021-2027)
  7. MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018) (HGF-SMHB-2014-2018)

Appears in the scientific report 2021
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > INM > INM-10
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Document types > Reports > Preprints
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-01-11, last modified 2024-03-13


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)