Home > Publications database > A mean-field toolbox for spiking neuronal network model analysis > print |
001 | 905088 | ||
005 | 20240313103134.0 | ||
024 | 7 | _ | |a 10.1101/2021.12.14.472584 |2 doi |
024 | 7 | _ | |a 2128/30123 |2 Handle |
024 | 7 | _ | |a altmetric:119111922 |2 altmetric |
037 | _ | _ | |a FZJ-2022-00387 |
100 | 1 | _ | |a Layer, Moritz |0 P:(DE-Juel1)174497 |b 0 |e Corresponding author |
245 | _ | _ | |a A mean-field toolbox for spiking neuronal network model analysis |
260 | _ | _ | |c 2021 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1641972837_25186 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Mean-field theory of spiking neuronal networks has led to numerous advances in our analytical and intuitive understanding of the dynamics of neuronal network models during the past decades. But, the elaborate nature of many of the developed methods, as well as the difficulty of implementing them, may limit the wider neuroscientific community from taking maximal advantage of these tools. In order to make them more accessible, we implemented an extensible, easy-to-use open-source Python toolbox that collects a variety of mean-field methods for the widely used leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox (NNMT) in its current state allows for estimating properties of large neuronal networks, such as firing rates, power spectra, and dynamical stability in mean-field and linear response approximation, without running simulations on high performance systems. In this article we describe how the toolbox is implemented, show how it is used to calculate neuronal network properties, and discuss different use-cases, such as extraction of network mechanisms, parameter space exploration, or hybrid modeling approaches. Although the initial version of the toolbox focuses on methods that are close to our own past and present research, its structure is designed to be open and extensible. It aims to provide a platform for collecting analytical methods for neuronal network model analysis and we discuss how interested scientists can share their own methods via this platform. |
536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |f H2020-Adhoc-2014-20 |x 1 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 2 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
536 | _ | _ | |a GRK 2416: MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240) |0 G:(GEPRIS)368482240 |c 368482240 |x 4 |
536 | _ | _ | |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |0 G:(DE-Juel1)JL SMHB-2021-2027 |c JL SMHB-2021-2027 |x 5 |
536 | _ | _ | |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018) |0 G:(DE-Juel1)HGF-SMHB-2014-2018 |c HGF-SMHB-2014-2018 |f MSNN |x 6 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Senk, Johanna |0 P:(DE-Juel1)162130 |b 1 |
700 | 1 | _ | |a Essink, Simon |0 P:(DE-Juel1)176777 |b 2 |
700 | 1 | _ | |a van Meegen, Alexander |0 P:(DE-Juel1)173607 |b 3 |
700 | 1 | _ | |a Bos, Hannah |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 5 |
773 | _ | _ | |a 10.1101/2021.12.14.472584 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905088/files/2021.12.14.472584v1.full.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:905088 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174497 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)176777 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)173607 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144806 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|