001     905119
005     20240712084524.0
024 7 _ |a 10.1002/solr.202100594
|2 doi
024 7 _ |a 2128/30141
|2 Handle
024 7 _ |a WOS:000694976100001
|2 WOS
037 _ _ |a FZJ-2022-00411
082 _ _ |a 600
100 1 _ |a Chime, Ugochi
|0 P:(DE-Juel1)184652
|b 0
|e Corresponding author
|u fzj
245 _ _ |a How Thin Practical Silicon Heterojunction Solar Cells Could Be? Experimental Study under 1 Sun and under Indoor Illumination
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643017176_4094
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The transition toward thinner microcrystalline silicon wafers for their potential performance gain has been of interest in recent years. Theoretical predictions have estimated a maximum efficiency for silicon wafers to be at about 100−110 μm thickness. The potential and losses in silicon heterojunction solar cells prepared on wafers with thickness in the range of 60−170 μm with focus on open-circuit voltage (V OC) and fill factor (FF) are studied experimentally. The applicability of thinner wafers for low light and indoor applications using light emitting diode (LED) lighting is also studied. The implied V OC (iV OC) is observed to increase with a decrease in wafer thickness according to theoretical predictions with absolute values approaching the theoretical limit. Unlike the iV OC, the implied FF is observed to decrease with wafer thickness reduction opposite to the theoretical predictions which are related to the effect of surface recombination. A combination of gains and losses results in a broad range of high efficiency under 1 sun for wafer thicknesses ranging from 75 to 170 μm with maximum of 22.3% obtained at 75 μm. As for indoor performance, thinner wafers show slightly better efficiency at lower light intensity under sun and LED illumination, promising improved performance for even thinner devices.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wolf, Leon
|b 1
700 1 _ |a Buga, Viktoriia
|b 2
700 1 _ |a Weigand, Daniel
|b 3
700 1 _ |a Gad, Alaaeldin
|0 P:(DE-Juel1)174037
|b 4
700 1 _ |a Köhler, Julian
|b 5
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 6
700 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 7
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 8
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 9
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 10
700 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 11
773 _ _ |a 10.1002/solr.202100594
|g Vol. 6, no. 1, p. 2100594 -
|0 PERI:(DE-600)2882014-9
|n 1
|p 2100594 -
|t Solar RRL
|v 6
|y 2022
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/905119/files/Solar%20RRL%20-%202021%20-%20Chime%20-%20How%20Thin%20Practical%20Silicon%20Heterojunction%20Solar%20Cells%20Could%20Be%20Experimental%20Study%20under%201%20Sun.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905119
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184652
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130212
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21