Journal Article FZJ-2022-00411

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
How Thin Practical Silicon Heterojunction Solar Cells Could Be? Experimental Study under 1 Sun and under Indoor Illumination

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Wiley-VCH Weinheim

Solar RRL 6(1), 2100594 - () [10.1002/solr.202100594]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The transition toward thinner microcrystalline silicon wafers for their potential performance gain has been of interest in recent years. Theoretical predictions have estimated a maximum efficiency for silicon wafers to be at about 100−110 μm thickness. The potential and losses in silicon heterojunction solar cells prepared on wafers with thickness in the range of 60−170 μm with focus on open-circuit voltage (V OC) and fill factor (FF) are studied experimentally. The applicability of thinner wafers for low light and indoor applications using light emitting diode (LED) lighting is also studied. The implied V OC (iV OC) is observed to increase with a decrease in wafer thickness according to theoretical predictions with absolute values approaching the theoretical limit. Unlike the iV OC, the implied FF is observed to decrease with wafer thickness reduction opposite to the theoretical predictions which are related to the effect of surface recombination. A combination of gains and losses results in a broad range of high efficiency under 1 sun for wafer thicknesses ranging from 75 to 170 μm with maximum of 22.3% obtained at 75 μm. As for indoor performance, thinner wafers show slightly better efficiency at lower light intensity under sun and LED illumination, promising improved performance for even thinner devices.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 1213 - Cell Design and Development (POF4-121) (POF4-121)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-5
Publications database
Open Access

 Record created 2022-01-12, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)