000905134 001__ 905134
000905134 005__ 20240712084533.0
000905134 0247_ $$2doi$$a10.1002/solr.202100783
000905134 0247_ $$2WOS$$aWOS:000726287900001
000905134 0247_ $$2Handle$$a2128/31309
000905134 037__ $$aFZJ-2022-00426
000905134 082__ $$a600
000905134 1001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b0$$eCorresponding author
000905134 245__ $$aPrediction of Limits of Solar‐to‐Hydrogen Efficiency from Polarization Curves of the Electrochemical Cells
000905134 260__ $$aWeinheim$$bWiley-VCH$$c2022
000905134 3367_ $$2DRIVER$$aarticle
000905134 3367_ $$2DataCite$$aOutput Types/Journal article
000905134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644569790_4292
000905134 3367_ $$2BibTeX$$aARTICLE
000905134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905134 3367_ $$00$$2EndNote$$aJournal Article
000905134 520__ $$aThe maximum solar-to-hydrogen efficiency (STH) in directly coupled photovoltaic-assisted water-splitting systems is achieved when the photovoltaic (PV) and electrochemical (EC) devices are power matched precisely. This matching requires that the polarization curve of the EC device crosses the current–voltage (IV) characteristics of the PV device at its maximum power point (MPP). Conversely, each point on the EC polarization curve can be considered the MPP of a PV device optimally coupled to the EC device. Therefore, at each point on the polarization curve, the minimum PV efficiency and maximum EC efficiency can be calculated for a specific irradiance. The product of both efficiencies generates the STH limit that can be attained at that specific point on the polarization curve. This “reverse analysis,” carried out with elementary math, does not involve any modeling or analysis of PV IV characteristics. Herein, this reverse analysis is described and how it can be used to quantify losses in PV–EC systems and the effect of mutual scaling of PV and EC devices is shown. This method is presented using a NiMo/NiFeOX catalyst pair as an example and was applied to a variety of PV–EC combinations described in the literature.
000905134 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000905134 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905134 7001_ $$aSmirnov, Vladimir$$b1
000905134 7001_ $$aRau, Uwe$$b2
000905134 7001_ $$aMerdzhanova, Tsvetelina$$b3
000905134 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202100783$$gp. 2100783 -$$n2$$p2100783$$tSolar RRL$$v6$$x2367-198X$$y2022
000905134 8564_ $$uhttps://juser.fz-juelich.de/record/905134/files/Solar%20RRL%20-%202021%20-%20Astakhov%20-%20Prediction%20of%20Limits%20of%20Solar%25u2010to%25u2010Hydrogen%20Efficiency%20from%20Polarization%20Curves%20of%20the.pdf$$yOpenAccess
000905134 8767_ $$d2022-11-15$$eHybrid-OA$$jDEAL
000905134 909CO $$ooai:juser.fz-juelich.de:905134$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000905134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b0$$kFZJ
000905134 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000905134 9141_ $$y2022
000905134 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905134 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000905134 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000905134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905134 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000905134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2021$$d2022-11-16
000905134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000905134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000905134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000905134 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000905134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000905134 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000905134 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2021$$d2022-11-16
000905134 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000905134 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000905134 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000905134 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000905134 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000905134 9801_ $$aAPC
000905134 9801_ $$aFullTexts
000905134 980__ $$ajournal
000905134 980__ $$aVDB
000905134 980__ $$aUNRESTRICTED
000905134 980__ $$aI:(DE-Juel1)IEK-5-20101013
000905134 980__ $$aAPC
000905134 981__ $$aI:(DE-Juel1)IMD-3-20101013