Journal Article FZJ-2022-00426

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Prediction of Limits of Solar‐to‐Hydrogen Efficiency from Polarization Curves of the Electrochemical Cells

 ;  ;  ;

2022
Wiley-VCH Weinheim

Solar RRL 6(2), 2100783 () [10.1002/solr.202100783]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The maximum solar-to-hydrogen efficiency (STH) in directly coupled photovoltaic-assisted water-splitting systems is achieved when the photovoltaic (PV) and electrochemical (EC) devices are power matched precisely. This matching requires that the polarization curve of the EC device crosses the current–voltage (IV) characteristics of the PV device at its maximum power point (MPP). Conversely, each point on the EC polarization curve can be considered the MPP of a PV device optimally coupled to the EC device. Therefore, at each point on the polarization curve, the minimum PV efficiency and maximum EC efficiency can be calculated for a specific irradiance. The product of both efficiencies generates the STH limit that can be attained at that specific point on the polarization curve. This “reverse analysis,” carried out with elementary math, does not involve any modeling or analysis of PV IV characteristics. Herein, this reverse analysis is described and how it can be used to quantify losses in PV–EC systems and the effect of mutual scaling of PV and EC devices is shown. This method is presented using a NiMo/NiFeOX catalyst pair as an example and was applied to a variety of PV–EC combinations described in the literature.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 1213 - Cell Design and Development (POF4-121) (POF4-121)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-5
Publications database
Open Access

 Record created 2022-01-12, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)