001     905134
005     20240712084533.0
024 7 _ |a 10.1002/solr.202100783
|2 doi
024 7 _ |a WOS:000726287900001
|2 WOS
024 7 _ |a 2128/31309
|2 Handle
037 _ _ |a FZJ-2022-00426
082 _ _ |a 600
100 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 0
|e Corresponding author
245 _ _ |a Prediction of Limits of Solar‐to‐Hydrogen Efficiency from Polarization Curves of the Electrochemical Cells
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1644569790_4292
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The maximum solar-to-hydrogen efficiency (STH) in directly coupled photovoltaic-assisted water-splitting systems is achieved when the photovoltaic (PV) and electrochemical (EC) devices are power matched precisely. This matching requires that the polarization curve of the EC device crosses the current–voltage (IV) characteristics of the PV device at its maximum power point (MPP). Conversely, each point on the EC polarization curve can be considered the MPP of a PV device optimally coupled to the EC device. Therefore, at each point on the polarization curve, the minimum PV efficiency and maximum EC efficiency can be calculated for a specific irradiance. The product of both efficiencies generates the STH limit that can be attained at that specific point on the polarization curve. This “reverse analysis,” carried out with elementary math, does not involve any modeling or analysis of PV IV characteristics. Herein, this reverse analysis is described and how it can be used to quantify losses in PV–EC systems and the effect of mutual scaling of PV and EC devices is shown. This method is presented using a NiMo/NiFeOX catalyst pair as an example and was applied to a variety of PV–EC combinations described in the literature.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Smirnov, Vladimir
|b 1
700 1 _ |a Rau, Uwe
|b 2
700 1 _ |a Merdzhanova, Tsvetelina
|b 3
773 _ _ |a 10.1002/solr.202100783
|g p. 2100783 -
|0 PERI:(DE-600)2882014-9
|n 2
|p 2100783
|t Solar RRL
|v 6
|y 2022
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/905134/files/Solar%20RRL%20-%202021%20-%20Astakhov%20-%20Prediction%20of%20Limits%20of%20Solar%25u2010to%25u2010Hydrogen%20Efficiency%20from%20Polarization%20Curves%20of%20the.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905134
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130212
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21