000905377 001__ 905377
000905377 005__ 20240506205522.0
000905377 0247_ $$2doi$$a10.1103/PhysRevResearch.3.023180
000905377 0247_ $$2Handle$$a2128/30281
000905377 0247_ $$2altmetric$$aaltmetric:107223855
000905377 0247_ $$2WOS$$aWOS:000662063500009
000905377 037__ $$aFZJ-2022-00630
000905377 082__ $$a530
000905377 1001_ $$00000-0003-3399-1341$$aHauck, J. B.$$b0$$eCorresponding author
000905377 245__ $$aElectronic instabilities in Penrose quasicrystals: Competition, coexistence, and collaboration of order
000905377 260__ $$aCollege Park, MD$$bAPS$$c2021
000905377 3367_ $$2DRIVER$$aarticle
000905377 3367_ $$2DataCite$$aOutput Types/Journal article
000905377 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714997129_14350
000905377 3367_ $$2BibTeX$$aARTICLE
000905377 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905377 3367_ $$00$$2EndNote$$aJournal Article
000905377 520__ $$aQuasicrystals lack translational symmetry, but can still exhibit long-range order, promoting them to candidates for unconventional physics beyond the paradigm of crystals. Here, we apply a real-space functional renormalization group approach to the prototypical quasicrystalline Penrose tiling Hubbard model treating competing electronic instabilities in an unbiased, beyond-mean-field fashion. Our work reveals a delicate interplay between charge and spin degrees of freedom in quasicrystals. Depending on the range of interactions and hopping amplitudes, we unveil a rich phase diagram including antiferromagnetic orderings, charge density waves, and subleading, superconducting pairing tendencies. For certain parameter regimes, we find a competition of phases, which is also common in crystals, but additionally encounter phases coexisting in a spatially separated fashion and ordering tendencies which mutually collaborate to enhance their strength. We therefore establish that quasicrystalline structures open up a route towards this rich ordering behavior uncommon to crystals and that an unbiased, beyond-mean-field approach is essential to describe this physics of quasicrystals correctly.
000905377 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000905377 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x1
000905377 588__ $$aDataset connected to DataCite
000905377 7001_ $$0P:(DE-HGF)0$$aHonerkamp, C.$$b1
000905377 7001_ $$0P:(DE-Juel1)169552$$aAchilles, Sebastian$$b2
000905377 7001_ $$00000-0002-9838-6866$$aKennes, D. M.$$b3
000905377 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.3.023180$$gVol. 3, no. 2, p. 023180$$n2$$p023180$$tPhysical review research$$v3$$x2643-1564$$y2021
000905377 8564_ $$uhttps://juser.fz-juelich.de/record/905377/files/PhysRevResearch.3.023180.pdf$$yOpenAccess
000905377 909CO $$ooai:juser.fz-juelich.de:905377$$pdnbdelivery$$pdriver$$pVDB$$popenaire$$popen_access
000905377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169552$$aForschungszentrum Jülich$$b2$$kFZJ
000905377 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000905377 9141_ $$y2021
000905377 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000905377 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905377 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000905377 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000905377 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
000905377 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-16T10:08:58Z
000905377 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000905377 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000905377 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000905377 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000905377 980__ $$ajournal
000905377 980__ $$aVDB
000905377 980__ $$aI:(DE-Juel1)JSC-20090406
000905377 980__ $$aI:(DE-82)080009_20140620
000905377 980__ $$aUNRESTRICTED
000905377 9801_ $$aFullTexts