000905453 001__ 905453
000905453 005__ 20240712112904.0
000905453 0247_ $$2arXiv$$aarXiv:2111.09842
000905453 0247_ $$2Handle$$a2128/30361
000905453 0247_ $$2altmetric$$aaltmetric:117176234
000905453 037__ $$aFZJ-2022-00694
000905453 1001_ $$0P:(DE-Juel1)176974$$aBaader, Florian$$b0$$ufzj
000905453 245__ $$aSimultaneous mixed-integer dynamic scheduling of processes and their energy systems
000905453 260__ $$c2021
000905453 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1642515594_6596
000905453 3367_ $$2ORCID$$aWORKING_PAPER
000905453 3367_ $$028$$2EndNote$$aElectronic Article
000905453 3367_ $$2DRIVER$$apreprint
000905453 3367_ $$2BibTeX$$aARTICLE
000905453 3367_ $$2DataCite$$aOutput Types/Working Paper
000905453 500__ $$a25 pages, 14 figures, 3 tables
000905453 520__ $$aIncreasingly volatile electricity prices make simultaneous scheduling optimization for production processes and their energy supply systems desirable. Simultaneous scheduling needs to account for both process dynamics and binary on/off-decisions in the energy system and thus leads to challenging mixed-integer dynamic optimization problems. In this contribution, we propose an efficient scheduling formulation that consists of three parts: a linear scale-bridging model for the closed-loop process output dynamics, a data-driven model for the process energy demand, and a mixed-integer linear model for the energy system. Process dynamics are discretized by collocation yielding a mixed-integer linear programming (MILP) formulation. We apply the scheduling method to a single-product reactor, with 5.6% economic improvement compared to steady-state operation, and a multi-product reactor, with 5.2% improvement compared to sequential scheduling. While capturing 85% and 96% of the improvement realized by a nonlinear optimization, the MILP formulation achieves optimization runtimes sufficiently fast for real-time scheduling.
000905453 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000905453 588__ $$aDataset connected to arXivarXiv
000905453 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b1$$ufzj
000905453 7001_ $$0P:(DE-Juel1)172097$$aDahmen, Manuel$$b2$$eCorresponding author$$ufzj
000905453 8564_ $$uhttps://juser.fz-juelich.de/record/905453/files/2111.09842.pdf$$yOpenAccess
000905453 909CO $$ooai:juser.fz-juelich.de:905453$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176974$$aForschungszentrum Jülich$$b0$$kFZJ
000905453 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176974$$aRWTH Aachen$$b0$$kRWTH
000905453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b1$$kFZJ
000905453 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$aETH Zurich$$b1
000905453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172097$$aForschungszentrum Jülich$$b2$$kFZJ
000905453 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000905453 9141_ $$y2021
000905453 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905453 920__ $$lyes
000905453 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000905453 9801_ $$aFullTexts
000905453 980__ $$apreprint
000905453 980__ $$aVDB
000905453 980__ $$aUNRESTRICTED
000905453 980__ $$aI:(DE-Juel1)IEK-10-20170217
000905453 981__ $$aI:(DE-Juel1)ICE-1-20170217