Preprint FZJ-2022-00694

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Simultaneous mixed-integer dynamic scheduling of processes and their energy systems

 ;  ;

2021

This record in other databases:

Please use a persistent id in citations:

Abstract: Increasingly volatile electricity prices make simultaneous scheduling optimization for production processes and their energy supply systems desirable. Simultaneous scheduling needs to account for both process dynamics and binary on/off-decisions in the energy system and thus leads to challenging mixed-integer dynamic optimization problems. In this contribution, we propose an efficient scheduling formulation that consists of three parts: a linear scale-bridging model for the closed-loop process output dynamics, a data-driven model for the process energy demand, and a mixed-integer linear model for the energy system. Process dynamics are discretized by collocation yielding a mixed-integer linear programming (MILP) formulation. We apply the scheduling method to a single-product reactor, with 5.6% economic improvement compared to steady-state operation, and a multi-product reactor, with 5.2% improvement compared to sequential scheduling. While capturing 85% and 96% of the improvement realized by a nonlinear optimization, the MILP formulation achieves optimization runtimes sufficiently fast for real-time scheduling.


Note: 25 pages, 14 figures, 3 tables

Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) (POF4-112)

Appears in the scientific report 2021
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > ICE > ICE-1
Document types > Reports > Preprints
Workflow collections > Public records
IEK > IEK-10
Publications database
Open Access

 Record created 2022-01-18, last modified 2024-07-12