001     905453
005     20240712112904.0
024 7 _ |a arXiv:2111.09842
|2 arXiv
024 7 _ |a 2128/30361
|2 Handle
024 7 _ |a altmetric:117176234
|2 altmetric
037 _ _ |a FZJ-2022-00694
100 1 _ |a Baader, Florian
|0 P:(DE-Juel1)176974
|b 0
|u fzj
245 _ _ |a Simultaneous mixed-integer dynamic scheduling of processes and their energy systems
260 _ _ |c 2021
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1642515594_6596
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 25 pages, 14 figures, 3 tables
520 _ _ |a Increasingly volatile electricity prices make simultaneous scheduling optimization for production processes and their energy supply systems desirable. Simultaneous scheduling needs to account for both process dynamics and binary on/off-decisions in the energy system and thus leads to challenging mixed-integer dynamic optimization problems. In this contribution, we propose an efficient scheduling formulation that consists of three parts: a linear scale-bridging model for the closed-loop process output dynamics, a data-driven model for the process energy demand, and a mixed-integer linear model for the energy system. Process dynamics are discretized by collocation yielding a mixed-integer linear programming (MILP) formulation. We apply the scheduling method to a single-product reactor, with 5.6% economic improvement compared to steady-state operation, and a multi-product reactor, with 5.2% improvement compared to sequential scheduling. While capturing 85% and 96% of the improvement realized by a nonlinear optimization, the MILP formulation achieves optimization runtimes sufficiently fast for real-time scheduling.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 1
|u fzj
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 2
|e Corresponding author
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/905453/files/2111.09842.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905453
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176974
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)176974
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21