000905805 001__ 905805
000905805 005__ 20240712113237.0
000905805 0247_ $$2doi$$a10.1016/j.ijhydene.2021.11.249
000905805 0247_ $$2ISSN$$a0360-3199
000905805 0247_ $$2ISSN$$a1879-3487
000905805 0247_ $$2Handle$$a2128/31588
000905805 0247_ $$2WOS$$aWOS:000749265100002
000905805 037__ $$aFZJ-2022-01025
000905805 082__ $$a620
000905805 1001_ $$00000-0001-7890-5529$$aNa, Youngseung$$b0
000905805 245__ $$aA robust methanol concentration sensing technique in direct methanol fuel cells and stacks using cell dynamics
000905805 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2022
000905805 3367_ $$2DRIVER$$aarticle
000905805 3367_ $$2DataCite$$aOutput Types/Journal article
000905805 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1659079775_17463
000905805 3367_ $$2BibTeX$$aARTICLE
000905805 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905805 3367_ $$00$$2EndNote$$aJournal Article
000905805 520__ $$aThe electrochemical behaviour of direct methanol fuel cells (DMFCs) is sensitive to methanol concentration; thus, to avoid external sensors, it is a promising candidate to monitor the concentration of methanol in the fuel circulation loop, which is central to the efficient operation of direct methanol fuel cell systems. We address this issue and report on an extremely robust electrochemical methanol sensing technique that is not sensitive to temperature, cell degradation and membrane electrode assembly (MEA) type. We develop a temperature independent empirical correlation of the dynamic response of cell voltage to step changes in current with methanol concentration. This equation is successfully validated under various operating scenarios at both the single cell and stack levels. Our sensing method achieves an impressive accuracy of ±0.1 M and this is expected to increase the reliability of methanol sensing and simplify the control logic of DMFC systems.
000905805 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000905805 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905805 7001_ $$0P:(DE-HGF)0$$aKhadke, Prashant$$b1
000905805 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b2
000905805 7001_ $$0P:(DE-Juel1)129867$$aKimiaie, Nicola$$b3
000905805 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b4
000905805 7001_ $$00000-0002-5984-5935$$aKrewer, Ulrike$$b5$$eCorresponding author
000905805 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.11.249$$gp. S0360319921046929$$n9$$p 6237-6246$$tInternational journal of hydrogen energy$$v47$$x0360-3199$$y2022
000905805 8564_ $$uhttps://juser.fz-juelich.de/record/905805/files/HE-S-21-04454.pdf$$yOpenAccess
000905805 909CO $$ooai:juser.fz-juelich.de:905805$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905805 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b2$$kFZJ
000905805 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b4$$kFZJ
000905805 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000905805 9141_ $$y2022
000905805 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000905805 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000905805 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905805 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2021$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-29
000905805 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J HYDROGEN ENERG : 2021$$d2022-11-29
000905805 920__ $$lyes
000905805 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000905805 9801_ $$aFullTexts
000905805 980__ $$ajournal
000905805 980__ $$aVDB
000905805 980__ $$aUNRESTRICTED
000905805 980__ $$aI:(DE-Juel1)IEK-14-20191129
000905805 981__ $$aI:(DE-Juel1)IET-4-20191129