Journal Article FZJ-2022-01025

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A robust methanol concentration sensing technique in direct methanol fuel cells and stacks using cell dynamics

 ;  ;  ;  ;  ;

2022
Elsevier New York, NY [u.a.]

International journal of hydrogen energy 47(9), 6237-6246 () [10.1016/j.ijhydene.2021.11.249]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The electrochemical behaviour of direct methanol fuel cells (DMFCs) is sensitive to methanol concentration; thus, to avoid external sensors, it is a promising candidate to monitor the concentration of methanol in the fuel circulation loop, which is central to the efficient operation of direct methanol fuel cell systems. We address this issue and report on an extremely robust electrochemical methanol sensing technique that is not sensitive to temperature, cell degradation and membrane electrode assembly (MEA) type. We develop a temperature independent empirical correlation of the dynamic response of cell voltage to step changes in current with methanol concentration. This equation is successfully validated under various operating scenarios at both the single cell and stack levels. Our sensing method achieves an impressive accuracy of ±0.1 M and this is expected to increase the reliability of methanol sensing and simplify the control logic of DMFC systems.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-14)
Research Program(s):
  1. 1231 - Electrochemistry for Hydrogen (POF4-123) (POF4-123)

Appears in the scientific report 2022
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-4
Workflow collections > Public records
IEK > IEK-14
Publications database
Open Access

 Record created 2022-01-24, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)