000906796 001__ 906796
000906796 005__ 20230123110607.0
000906796 0247_ $$2doi$$a10.1103/PhysRevMaterials.6.024602
000906796 0247_ $$2ISSN$$a2475-9953
000906796 0247_ $$2ISSN$$a2476-0455
000906796 0247_ $$2Handle$$a2128/30856
000906796 0247_ $$2WOS$$aWOS:000766666500002
000906796 037__ $$aFZJ-2022-01697
000906796 041__ $$aEnglish
000906796 082__ $$a530
000906796 1001_ $$0P:(DE-Juel1)169951$$aPerla, Pujitha$$b0
000906796 245__ $$aTe-doped selective-area grown InAs nanowires for superconducting hybrid devices
000906796 260__ $$aCollege Park, MD$$bAPS$$c2022
000906796 3367_ $$2DRIVER$$aarticle
000906796 3367_ $$2DataCite$$aOutput Types/Journal article
000906796 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668082124_3328
000906796 3367_ $$2BibTeX$$aARTICLE
000906796 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906796 3367_ $$00$$2EndNote$$aJournal Article
000906796 520__ $$aSemiconductor nanowires have emerged as versatile components in superconducting hybrid devices forMajorana physics and quantum computing. The transport properties of nanowires can be tuned either by fieldeffect or doping. We investigated a series of InAs nanowires the conductivity of which has been modified byn-type doping using tellurium. In addition to electron microscopy studies, the wires were also examined withatomic probe tomography to obtain information about the local incorporation of Te atoms. It was found thatthe Te atoms mainly accumulate in the core of the nanowire and at the corners of the {110} side facets. Theefficiency of n-type doping was also confirmed by transport measurements. As a demonstrator hybrid device, aJosephson junction was fabricated using a nanowire as a weak link. The corresponding measurements showed aclear increase of the critical current with increase of the dopant concentration.
000906796 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000906796 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906796 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000906796 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000906796 7001_ $$0P:(DE-Juel1)174455$$aFaustmann, Anton$$b1
000906796 7001_ $$0P:(DE-HGF)0$$aKölling, Sebastian$$b2
000906796 7001_ $$0P:(DE-Juel1)145960$$aZellekens, Patrick$$b3
000906796 7001_ $$0P:(DE-HGF)0$$aDeacon, Russell$$b4
000906796 7001_ $$0P:(DE-HGF)0$$aAruni Fonseka, H.$$b5
000906796 7001_ $$0P:(DE-Juel1)172619$$aKölzer, Jonas$$b6
000906796 7001_ $$0P:(DE-HGF)0$$aSato, Yuki$$b7
000906796 7001_ $$0P:(DE-HGF)0$$aSanchez, Ana M.$$b8
000906796 7001_ $$0P:(DE-HGF)0$$aMoutanabbir, Oussama$$b9
000906796 7001_ $$0P:(DE-HGF)0$$aIshibashi, Koji$$b10
000906796 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b11
000906796 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b12
000906796 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b13$$eCorresponding author
000906796 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.6.024602$$gVol. 6, no. 2, p. 024602$$n2$$p024602$$tPhysical review materials$$v6$$x2475-9953$$y2022
000906796 8564_ $$uhttps://juser.fz-juelich.de/record/906796/files/PhysRevMaterials.6.024602.pdf$$yOpenAccess
000906796 8564_ $$uhttps://juser.fz-juelich.de/record/906796/files/Te-doping-arXiv.pdf$$yOpenAccess
000906796 909CO $$ooai:juser.fz-juelich.de:906796$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169951$$aForschungszentrum Jülich$$b0$$kFZJ
000906796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174455$$aForschungszentrum Jülich$$b1$$kFZJ
000906796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich$$b3$$kFZJ
000906796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172619$$aForschungszentrum Jülich$$b6$$kFZJ
000906796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b11$$kFZJ
000906796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich$$b12$$kFZJ
000906796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b13$$kFZJ
000906796 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000906796 9141_ $$y2022
000906796 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000906796 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000906796 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906796 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000906796 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2021$$d2022-11-25
000906796 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000906796 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000906796 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000906796 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000906796 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000906796 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000906796 920__ $$lyes
000906796 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000906796 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000906796 980__ $$ajournal
000906796 980__ $$aVDB
000906796 980__ $$aI:(DE-Juel1)PGI-9-20110106
000906796 980__ $$aI:(DE-Juel1)PGI-10-20170113
000906796 980__ $$aUNRESTRICTED
000906796 9801_ $$aFullTexts