% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Duan:906937,
      author       = {Duan, Weiyuan and Lambertz, Andreas and Bittkau, Karsten
                      and Qiu, Depeng and Qiu, Kaifu and Rau, Uwe and Ding,
                      Kaining},
      title        = {{A} route towards high‐efficiency silicon heterojunction
                      solar cells},
      journal      = {Progress in photovoltaics},
      volume       = {30},
      number       = {4},
      issn         = {1062-7995},
      address      = {Chichester},
      publisher    = {Wiley},
      reportid     = {FZJ-2022-01762},
      pages        = {384 - 392},
      year         = {2022},
      abstract     = {In this work, we propose a route to achieve a certified
                      efficiency of up to $24.51\%$ for silicon heterojunction
                      (SHJ) solar cell on a full-size n-type M2
                      monocrystalline-silicon Cz wafer (total area, 244.53 cm2)
                      by mainly improving the design of the hydrogenated intrinsic
                      amorphous silicon (a-Si:H) on the rear side of the solar
                      cell and the back reflector. A dense second intrinsic a-Si:H
                      layer with an optimized thickness can improve the vertical
                      carrier transport, resulting in an improved fill factor
                      (FF). In order to reduce the plasmonic absorption at the
                      back reflector, a low-refractive-index magnesium fluoride
                      (MgF2) is deposited before the Ag layer; this leads to an
                      improved gain of short circuit current density (Jsc). In
                      total, together with MgF2 double antireflection coating and
                      other fine optimizations during cell fabrication process,
                      $~1\%$ absolute efficiency enhancement is finally obtained.
                      A detailed loss analysis based on Quokka3 simulation is
                      presented to confirm the design principles, which also gives
                      an outlook of how to improve the efficiency further.},
      cin          = {IEK-5},
      ddc          = {690},
      cid          = {I:(DE-Juel1)IEK-5-20101013},
      pnm          = {1213 - Cell Design and Development (POF4-121) /
                      Verbundvorhaben: Street - Einsatz von hocheffizienten
                      Solarzellen in elektrisch betriebenen Nutzfahrzeugen;
                      Teilvorhaben: Herstellung und Entwicklung von (0324275E) /
                      Verbundvorhaben: TuKaN - Tunnelkontakte auf N-Typ: für die
                      Metallisierung mit Siebdruck, Teilvorhaben: Herstellung von
                      Solarzellen mit passivierendem Tunnelkontakt und
                      funktionalen Schichten aus katalytischer und
                      plasmaunterstützter chemischer Gasphasenab (0324198D) /
                      Touch - Technologie- und Charakterisierungsplattform für
                      die Entwicklung von hoch-effizienten
                      Silizium-Heterostruktursolarzellen (0324351)},
      pid          = {G:(DE-HGF)POF4-1213 / G:(BMWi)0324275E / G:(BMWi)0324198D /
                      G:(BMWi)0324351},
      typ          = {PUB:(DE-HGF)16},
      UT           = {WOS:000716697900001},
      doi          = {10.1002/pip.3493},
      url          = {https://juser.fz-juelich.de/record/906937},
}